• Title/Summary/Keyword: steel moment connections

Search Result 355, Processing Time 0.02 seconds

Analysis and design of demountable steel column-baseplate connections

  • Li, Dongxu;Uy, Brian;Aslani, Farhad;Patel, Vipul
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.753-775
    • /
    • 2016
  • This paper aims to investigate the demountability of steel column-baseplate connections subjected to monotonic and cyclic loading. This paper presents the finite element analysis of steel column-baseplate connections under monotonic and cyclic loading. The finite element model takes into account the effects of material and geometric nonlinearities. Bauschinger and pinching effects were also included in the developed model, through which degradation of steel yield strength in cyclic loading can be well simulated. The results obtained from the finite element model are compared with the existing experimental results. It is demonstrated that the finite element model accurately predicts the initial stiffness, ultimate bending moment strength of steel column-baseplate connections. The finite element model is utilised to examine the effects of axial load, baseplate thickness, anchor bolt diameter and position on the behaviour of steel column-baseplate connections. The effects of various parameters on the demountability of steel column-baseplate connections are investigated. To achieve a demountable and reusable structure, various design parameters need to be considered. Initial stiffness and moment capacity of steel columnbaseplate connections are compared with design strengths from Eurocode 3. The comparison between finite element analysis and Eurocode 3 indicates that predictions of initial stiffness for semi-rigid connections should be developed and improved design of the connections needs to be used in engineering practice.

Seismic Retrofit Design of RHS Column-to-H Beam Connections (RHS 기둥-H형강보 접합부의 내진보강 설계)

  • Kim, Young Ju;Oh, Sang Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.529-537
    • /
    • 2008
  • The objective of this paper is to propose retrofit design methods of theRHS column-to-H beam connections with floor slabs. Referring to previous studies on the retrofitting of moment connections, it is clear that connections retrofitted with a stiffened RBS (SR) or a lengthened horizontal stiffener (LH) has an effect on decreasing the stress/strain concentration. A new design procedure using these two retrofitting methods was thus presented. In addition, this paper addressed various design or detailing options and recommended a procedure for designing the improved retrofitting method of steel moment connections. Finally, a pilot test was conducted to verify the design procedure.

Re-evaluation of Force Transfer Mechanism of Welded Steel Moment Connections (용접 철골 모멘트접합부의 응력전달 메커니즘 재평가)

  • Lee, Choel-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.59-69
    • /
    • 2005
  • Employing the classical beam theory for the design of welded steel moment connections has been brought into question by several researchers since the 1994 Northridge earthquake. In this study, the load transfer mechanism in various welded steel moment connections is comprehensively reviewed mainly based on recent studies conducted by the writer. Available analytical and experimental results showed that the load path in almost all the welded steel moment connections is completely different from that as predicted by the classical beam theory. Vertical plates near the connection such as the beam web, the web of the straight haunch, and the rib act as a strut rather than following the classical beam theory. The shear force transfer in the RBS connection is essentially the same as that in PN type connection. Some simplified analytical models that can be used as the basis of a practical design procedure are also presented.

Effect of connection rotation capacities on seismic performance of IMF systems

  • Han, Sang Whan;Moon, Ki-Hoon;Ha, Sung Jin
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.73-89
    • /
    • 2016
  • The seismic performance of moment frames could vary according to the rotation capacity of their connections. The minimum rotation capacity of moment connections for steel intermediate moment frames (IMF) was defined as 0.02 radian in AISC 341-10. This study evaluated the seismic performance of IMF frames with connections having a rotation capacity of 0.02 radian. For this purpose, thirty IMFs were designed according to current seismic design provisions considering different design parameters such as the number of stories, span length, and seismic design categories. The procedure specified in FEMA P695 was used for conducting seismic performance evaluation. It was observed that the rotation capacity of 0.02 radian could not guarantee the satisfactory seismic performance of IMFs. This study also conducted seismic performance evaluation for IMFs with connections having the rotation capacity of 3% and ductile connections for proposing the minimum rotation capacity of IMF connections.

Behavior of simple precast high-strength concrete beams connected in the maximum bending moment zone using steel extended endplate connections

  • Magdy I. Salama;Jong Wan Hu;Ahmed Almaadawy;Ahmed Hamoda;Basem O. Rageh;Galal Elsamak
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.627-641
    • /
    • 2024
  • This paper presents an experimental and numerical study to investigate the behavior of the precast segmental concrete beams (PSCBs) utilizing high-strength concrete (HSC) connected in the zone of the maximum bending moment using steel extended endplate connections (EECs). The experimental study consisted of five beams as follows: The first beam was the control beam for comparison, which was an unconnected one-piece beam made of HSC. The other four other beams consisted of two identical pieces of precast concrete. An important point to be noted is that at the end of each piece, a steel plate was used with a thickness of 10 mm. Moreover, this steel plate was welded to the lower and upper reinforcing bars of the beam. Furthermore, the steel plate was made to connect the two pieces using the technique of EECs. Several variables were taken in these four beams, whether from the shape of the connection or enhancing the behavior of the connection using the post-tensioning technique. EECs without stiffeners were used for some of the tested beams. The behavior of these connections was improved using stiffeners and shear bolts. To get accurate results, a comparison was made between the behaviors of the five beams. Another important point to be noted is that Abaqus and SAP2000 programs were used to investigate the behavior of PSCBs and to ensure the accuracy of the modeling process which showed a good agreement with the experimental results. Additionally, the simplified modeling using SAP2000 was able to model the nonlinear behavior of PSCBs connected using steel EECs. It was found that the steel pre-tensioned bolted EECs, reinforced with steel stiffeners and shear anchors, could be used to connect the precast HSC segmental beams via the internal pre-stressing technique.

Seismic Behavior of Steel Moment Connections with Different Structural Characteristics (철골 모멘트 연결부의 구조특성에 따른 지진 거동 연구)

  • Joh, Chang-Bin
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.76-84
    • /
    • 2002
  • The seismic behaviors of steel moment connections with different structural characteristics are investigated. The rupture index, which represents the fracture potential, is adopted to study the effect of concrete slab and the relative strength between the coin the beam, and Panel zone on the ductility of connections. The results show that the presence of slab increases the beam strength, imposes constraint near the beam top flange, and consequently, induces concentrated deformation near the beam access hall, which reduces the ductility of the connection. The total deformation capacity of the connection depends not only on the beam but also on the column and panel zone. Therefore, the detrimental slab effects and the relative strength should be considered in the seismic design of the connection.

Moment-Rotation Relation of Steel Connections with Fixed-End Restraint (단부구속도에 따른 철골 접합부의 모멘트-회전각 관계에 관한 연구)

  • Ahn, Hyung-Joon;Kim, Keon-Ok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.219-223
    • /
    • 2002
  • The actual behavior of joint is traditionally disregarded in steel frame design. In fact, the structural analysis of steel frames is generally carried out by assuming that joints fulfil the ideal condition of either a hinge or a fixed-end restraints. In this way, calculations are made somewhat simpler, but the structural model is not able to reflect the actual structural response. Therefore, steel frame classification system for estimation or analysis about behavior of steel frame should be established, and range that each connections belongs should be divided definitely. This research presents realistic and practical moment-rotation relation through investigation and analysis of steel frame beam-to-column classification system.

Behaviour insights on damage-control composite beam-to-beam connections with replaceable elements

  • Xiuzhang He;Michael C.H. Yam;Ke Ke;Xuhong Zhou;Huanyang Zhang;Zi Gu
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.773-791
    • /
    • 2023
  • Connections with damage concentrated to pre-selected components can enhance seismic resilience for moment resisting frames. These pre-selected components always yield early to dissipate energy, and their energy dissipation mechanisms vary from one to another, depending on their position in the connection, geometry configuration details, and mechanical characteristics. This paper presents behaviour insights on two types of beam-to-beam connections that the angles were designed as energy dissipation components, through the results of experimental study and finite element analysis. Firstly, an experimental programme was reviewed, and key responses concerning the working mechanism of the connections were presented, including strain distribution at the critical section, section force responses of essential components, and initial stiffness of test specimens. Subsequently, finite element models of three specimens were established to further interpret their behaviour and response that were not observable in the tests. The moment and shear force transfer paths of the composite connections were clarified through the test results and finite element analysis. It was observed that the bending moment is mainly resisted by axial forces from the components, and the dominant axial force is from the bottom angles; the shear force at the critical section is primarily taken by the slab and the components near the top flange. Lastly, based on the insights on the load transfer path of the composite connections, preliminary design recommendations are proposed. In particular, a resistance requirement, quantified by a moment capacity ratio, was placed on the connections. Design models and equations were also developed for predicting the yield moment resistance and the shear resistance of the connections. A flexible beam model was proposed to quantify the shear resistance of essential components.

Seismic Design of Steel Moment Connections with Welded Straight Haunch (용접 수평헌치로 보강된 철골 모멘트 접합부의 내진설계)

  • 이철호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.269-277
    • /
    • 2000
  • This paper describes a seismic design procedure for steel moment connections with welded straight haunch. Recent test results showed that welding a straight haunch beneath the beam could be a viable solution for not only repair and rehabilitation of pre-Northridge moment connections but also new construction. Although a design procedure for the connection with triangular welded haunch has been developed recently, it is not applicable for the straight haunch moment connection because the force transfer mechanism is different. A simplified analytical model that considers the force interaction and deformation compatibility between the beam and haunch is briefly presented first based on the writer`s previous study. A generic design procedure as well as details that minimize the stress concentration at the haunch tip are also recommended.

  • PDF

Seismic response of built-up double-I column in steel moment resisting frame using welded external diaphragm plate

  • Tabebordbar, Amir;Dehghan, Seyed Mehdi;Fathi, Farshid;Najafgholipour, Mohammad Amir
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.747-759
    • /
    • 2021
  • Built-up Double-I (BD-I) columns have been commonly used for mid-rise steel-frame structures in Iran. These columns consist of two hot rolled IPE sections which are connected by two cover plates and fillet welds. Until 2017, BD-I columns were employed in intermediate moment resisting frames (MRF) using welded flange plate (WFP) connections. To evaluate the seismic behavior of the connections, four samples were made and tested based on cyclic loading according to AISC 341-16. It was concluded that typical samples cannot satisfy the seismic provisions related to intermediate MRFs. In contrast, the proposed connections retrofitted with two-part external diaphragms were able to satisfy not only the seismic requirements related to intermediate MRFs but also those related to special MRFs according to AISC. The numerical modeling of these samples was performed using ABAQUS finite element software. This study compared the hysteresis moment-rotation curves, plastic strains, and behavior modes in both experimental samples and numerical models.