• 제목/요약/키워드: steel haunch

검색결과 32건 처리시간 0.025초

System seismic performance of haunch repaired steel MRFs : dual panel zone modeling and a case study

  • Lee, Cheol-Ho
    • Structural Engineering and Mechanics
    • /
    • 제6권2호
    • /
    • pp.125-141
    • /
    • 1998
  • Recent test results of steel moment connections repaired with a haunch on the bottom side of the beam have been shown to be a very promising solution to enhancing the seismic performance of steel moment-resisting frames. Yet, little is known about the effects of using such a repair scheme on the global seismic response of structures. When haunches are incorporated in a steel moment frame, the response prediction is complicated by the presence of "dual" panel zones. To investigate the effects of a repair on seismic performance, a case study was conducted for a 13-story steel frame damaged during the 1994 Northridge earthquake. It was assumed that only those locations with reported damage would be repaired with haunches. A new analytical modeling technique for the dual panel zone developed by the author was incorporated in the analysis. Modeling the dual panel zone was among the most significant consideration in the analyses. Both the inelastic static and dynamic analyses did not indicate detrimental side effects resulting from the repair. As a result of the increased strength in dual panel zones, yielding in these locations were eliminated and larger plastic rotation demand occurred in the beams next to the shallow end of the haunches. Nevertheless, the beam plastic rotation demand produced by the Sylmar record of 1994 Northridge earthquake was still limited to 0.017 radians. The repair resulted in a minor increase in earthquake energy input. In the original structure, the panel zones should dissipate about 80% (for the Oxnard record) and 70% (for the Sylmar record) of the absorbed energy, assuming no brittle failure of moment connections. After repair, the energy dissipated in the panel zones and beams were about equal.

헌치로 보강된 철골모멘트 골조의 지진 응답: 사례연구 (Seismic Response of Haunch Repaired Steel MRFs: A Case Study)

  • 이철호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.173-181
    • /
    • 1997
  • To investigate the effects of haunch repair on the system seismic performance of steel moment-resisting frames (steel MRFs), a case study was conducted for a 13-story frame damaged during the 1994 Northridge earthquake. It was assumed that only those locations with reported damage would be repaired with haunches. A new analytical modeling technique for the dual panel zone developed by the author was incorporated in the analysis. Both the inelastic static and dynamic analyses did not indicate detrimental side effects resulting from the repair. As a result of the increased strength in dual panel zones, yielding in these locations were eliminated and larger plastic rotation demand occurred in the beams next to the shallow end of the haunches. Nevertheless, the beam plastic rotation demand produced by the Sylmar record of 1994 Northridge earthquake was still limited to 1.7% radians. The repair resulted in a minor increase in earthquake energy input. In the original structure, the panel zones should dissipate about 80%(for the Oxnard record) and 70%(for the Sylmar record) of the absorbed energy, assuming no brittle failure of moment connections. After repair, the energy dissipated in the panel zones and beams were about equal.

  • PDF

프리스트레스트 콘크리트 박스거더 교량 바닥판의 구조거동에 관한 실험 연구 (An Experimental Study on the Structure Behavior of Deck Slabs in PSC Box Girder Bridges)

  • 오병환;이성철;박성용;김성태;박성룡;김병석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.319-322
    • /
    • 2002
  • In this paper, an experimental study is carried out to find out structural behavior of upper slab in concrete box girder bridges. The major variables in the tests are the cross-section of upper slab including haunch dimensions. The strains of concrete and steel bars and the deflections of slabs are measured automatically during the tests. The test results indicate that the size of haunches has much influence on the structural behavior of box girders. The appropriate haunch dimensions are suggested from the present study.

  • PDF

프리스트레스트 콘크리트 박스거더의 횡방향 극한거동 실험 연구 (Lateral ultimate behavior of prestressed concrete box girder bridges)

  • 오병환;최영철;이성철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.479-482
    • /
    • 2005
  • The concrete box girder members are extensively used as a superstructure in bridge construction. The load carrying capacity of concrete box girders in lateral direction is generally influenced by the sizes of haunch and web. The internal upper decks are restrained by the webs and exhibit strength enhancement due to the development of aching action. The current codes do not have generally consider the arching action of deck slab in the design because of complexity of the behavior. However, there are significant benefits in utilizing the effects of arching action in the design of concrete members. The main objective of this paper is to propose a rational method to predict the ultimate load of deck slab by considering various haunch sizes and web restraint effect of concrete box girder bridges. To this end, a comprehensive experimental program has been set up and seven large-scale concrete box girders have been tested. A transverse analysis model of concrete box girders with haunches is proposed and compared with test data. The results of present study indicate that the ultimate strength is significantly affected by haunch dimension. The increase of strength due to concrete arcing action is reduced with an increase of prestressing steel ratio in laterally prestressed concrete box girders and increases with a larger haunch dimension. The proposed theory allows more realistic prediction of lateral ultimate strength for rational design of actual concrete box girder bridges.

  • PDF

용접 수평헌치로 보강된 철골 모멘튼 접합부의 내진설계 (Seismic Design of Steel Moment Connections with Welded Straight Haunch)

  • 이철호
    • 한국지진공학회논문집
    • /
    • 제4권4호
    • /
    • pp.73-81
    • /
    • 2000
  • 본 연구에서는 용접 수평헌치로 보강된 철골 모멘트 접합부의 내진설계법을 제시하고자 한다. 최근의 실험결과에 의하면 보의 하부를 수평헌치로 용접하는 방안은 취약한 내진성능이 드러나 기존 철골 모멘트 접합부의 내진보강이나 내진성능이 뛰어난 건물의 구축에 매우 효과적임을 알 수 있다. 용점 삼각헌치로 보강된 접합부의 설계법은 최근에 미국의 연구자들에 의해 제시된 바가 있다. 그러나 이 설계법은 응력 전달 메커니즘이 상이한 수평헌티 접합부의 설계에는 적용될수 없다. 본 논문에서는 우선 수평헌치와 보의 상호작용 및 변형의 적합 조건을 고려하여 도출된 단순화된 해석적 응력전달 모형을 간략히 기술한다. 이를 기초로 수평헌치 접합부의 단계별 내진 설계절차를 제안한다. 아울러 헌티단부의 응력집중을 줄이는데 매우 효과적인 디테일도 제시하고자 한다.

  • PDF

Anti-seismic behavior of composite precast utility tunnels based on pseudo-static tests

  • Yang, Yanmin;Tian, Xinru;Liu, Quanhai;Zhi, Jiabo;Wang, Bo
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.233-244
    • /
    • 2019
  • In this work, we have studied the effects of different soil thicknesses, haunch heights, reinforcement forms and construction technologies on the seismic performance of a composite precast fabricated utility tunnel by pseudo-static tests. Five concrete specimens were designed and fabricated for low-cycle reciprocating load tests. The hysteretic behavior of composite precast fabricated utility tunnel under simulated seismic waves and the strain law of steel bars were analyzed. Test results showed that composite precast fabricated utility tunnel met the requirements of current codes and had good anti-seismic performance. The use of a closed integral arrangement of steel bars inside utility tunnel structure as well as diagonal reinforcement bars at its haunches improved the integrity of the whole structure and increased the bearing capacity of the structure by about 1.5%. Increasing the thickness of covering soil within a certain range was beneficial to the earthquake resistance of the structure, and the energy consumption was increased by 10%. Increasing haunch height within a certain range increased the bearing capacity of the structure by up to about 19% and energy consumption by up to 30%. The specimen with the lowest haunch height showed strong structural deformation with ductility coefficient of 4.93. It was found that the interfaces of haunches, post-casting self-compacting concrete, and prefabricated parts were the weak points of utility tunnel structures. Combining the failure phenomena of test structures with their related codes, we proposed improvement measures for construction technology, which could provide a reference for the construction and design of practical projects.

Investigations on the behaviour of corrosion damaged gravity load designed beam-column sub-assemblages under reverse cyclic loading

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Earthquakes and Structures
    • /
    • 제16권2호
    • /
    • pp.235-251
    • /
    • 2019
  • Corrosion of reinforcement is the greatest threat to the safety of existing reinforced concrete (RC) structures. Most of the olden structures are gravity load designed (GLD) and are seismically deficient. In present study, investigations are carried out on corrosion damaged GLD beam-column sub-assemblages under reverse cyclic loading, in order to evaluate their seismic performance. Five GLD beam-column sub-assemblage specimens comprising of i) One uncorroded ii) Two corroded iii) One uncorroded strengthened with steel bracket and haunch iv) One corroded strengthened with steel bracket and haunch, are tested under reverse cyclic loading. The performances of these specimens are assessed in terms of hysteretic behaviour, energy dissipation and strength degradation. It is noted that the nature of corrosion i.e. uniform or pitting corrosion and its location have significant influence on the behaviour of corrosion damaged GLD beam-column sub-assemblages. The corroded specimens with localised corrosion pits showed in-cyclic strength degradation. The study also reveals that external strengthening which provides an alternate force path but depends on the strength of the existing reinforcement bars, is able to mitigate the seismic risk of corroded GLD beam-column sub-assemblages to the level of control uncorroded GLD specimen.

Research on the anti-seismic performance of composite precast utility tunnels based on the shaking table test and simulation analysis

  • Yang, Yanmin;Li, Zigen;Li, Yongqing;Xu, Ran;Wang, Yunke
    • Computers and Concrete
    • /
    • 제27권2호
    • /
    • pp.163-173
    • /
    • 2021
  • In this paper, the parameters of haunch height, reinforcement ratio and site condition were evaluated for the influence on the seismic performance of a composite precast fabricated utility tunnel by shaking table test and numerical simulation. The dynamic response laws of acceleration, interlayer displacement and steel strain under unidirectional horizontal seismic excitation were analyzed through four specimens with a similarity ratio of 1:6 in the test. And a numerical model was established and analyzed by the finite element software ABAQUS based on the structure of utility tunnel. The results indicated that composite precast fabricated utility tunnel with the good anti-seismic performance. In a certain range, increasing the height of haunch or the ratio of reinforcement could reduce the influence of seismic wave on the utility tunnel structure, which was beneficial to the structure earthquake resistance. The clay field containing the interlayer of liquefied sandy soil has a certain damping effect on the structure of the utility tunnel, and the displacement response could be reduced by 14.1%. Under the excitation of strong earthquake, the reinforcement strain at the side wall upper end and haunches of the utility tunnel was the biggest, which is the key part of the structure. The experimental results were in good agreement with the fitting results, and the results could provide a reference value for the anti-seismic design and application of composite precast fabricated utility tunnel.

Cyclic testing of steel I-beams reinforced with GFRP

  • Egilmez, O. Ozgur;Yormaz, Doruk
    • Steel and Composite Structures
    • /
    • 제11권2호
    • /
    • pp.93-114
    • /
    • 2011
  • Flange and web local buckling in beam plastic hinge regions of steel moment frames can prevent beam-column connections from achieving adequate plastic rotations under earthquake-induced forces. This threat is especially valid for existing steel moment frame buildings with beams that lack adequate flange/web slenderness ratios. As the use of fiber reinforced polymers (FRP) have increased in strengthening and repair of steel members in recent years, using FRPs in stabilizing local instabilities have also attracted attention. Previous computational studies have shown that longitudinally oriented glass FRP (GFRP) strips may serve to moderately brace beam flanges against the occurrence of local buckling during plastic hinging. An experimental study was conducted at Izmir Institute of Technology investigating the effects of GFRP reinforcement on local buckling behavior of existing steel I-beams with flange slenderness ratios (FSR) exceeding the slenderness limits set forth in current seismic design specifications and modified by a bottom flange triangular welded haunch. Four European HE400AA steel beams with a depth/width ratio of 1.26 and FSR of 11.4 were cyclically loaded up to 4% rotation in a cantilever beam test set-up. Both bare beams and beams with GFRP sheets were tested in order to investigate the contribution of GFRP sheets in mitigating local flange buckling. Different configurations of GFRP sheets were considered. The tests have shown that GFRP reinforcement can moderately mitigate inelastic flange local buckling.

헌치로 보강된 철골 모멘트 접합부의 탄성 횡변위에 대한 영향 (Effects of Haunch Reinforced Steel Moment Connection on Elastic Lateral Drift)

  • 이철호
    • 한국강구조학회 논문집
    • /
    • 제9권1호통권30호
    • /
    • pp.149-157
    • /
    • 1997
  • 철골 모멘트 접합부를 헌치로서 보강할 경우 내진거동이 크게 증진됨이 최근의 실물대 시험에서 입증되고 있다. 본 연구에서는 헌치로서 보강된 철골 모멘트 접합부가 골조의 탄성 횡변위 거동에 미치는 영향을 해석적으로 평가하는 방안을 제시하였다. 즉 내부의 보-기둥 부분골조를 대상으로 기둥, 보 및 이중패널존에서 기인하는 탄성 횡변위 성분을 해석적으로 유도하였다. 핵심이 되는 내용은 헌치 보강시 생성되는 이중패널존의 전단변형을 고려하는 것이었다. 제시된 방안에 의한 예측치는 3차원 유한요소해석에 의한 결과와 잘 부합하였다. 본 연구에서 수행한 사례연구에 의할 때 헌치의 도입으로 패널존의 강성증대가 가장 현저하여서 패널존의 전단변형에서 기인하는 탄성 횡변위가 50%정도 감소되었다. 본 연구의 결과는 아직 잘 알려지지 않은 헌치 보강에 따른 부차효과(side effects)의 이해에 도움이 될 수 있을 것이다.

  • PDF