• Title/Summary/Keyword: steel fiber-reinforced concrete

Search Result 1,076, Processing Time 0.028 seconds

Calculation of Crack Width in SFRC Structures (강섬유보강 철근콘크리트구조물에 있어서의 균열폭 계산)

  • 강보순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.579-584
    • /
    • 2001
  • A method is described for predicting crack with and spacing in Steel Fiber Reinforced Concrete (SFRC). The crack behavior of SFRC influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete. It can be observed from experimental results that addition of steel fiber to reinforced concrete beam reduces crack width in serviceability limit states. The proposed method predicts crack widths in cracking stage of the beam. Calculated crack widths obtained for reinforced concrete beams and different volume and type of steel fiber, strength of concrete showed good agreement with experimental results.

  • PDF

Prediction of deflection of high strength steel fiber reinforced concrete beams and columns

  • Kara, Ilker Fatih;Dundar, Cengiz
    • Computers and Concrete
    • /
    • v.9 no.2
    • /
    • pp.133-151
    • /
    • 2012
  • This paper presents an analytical procedure for the analysis of high strength steel fiber reinforced concrete members considering the cracking effect in the serviceability loading range. Modifications to a previously proposed formula for the effective moment of inertia are presented. Shear deformation effect is also taken into account in the analysis, and the variation of shear stiffness in the cracked regions of members has been considered by reduced shear stiffness model. The effect of steel fibers on the behavior of reinforced concrete members have been investigated by the developed computer program based on the aforementioned procedure. The inclusion of steel fibers into high strength concrete beams and columns enhances the effective moment of inertia and consequently reduces the deflection reinforced concrete members. The contribution of the shear deformation to the total vertical deflection of the beams is found to be lower for beams with fibers than that of beams with no fibers. Verification of the proposed procedure has been confirmed from series of reinforced concrete beam and column tests available in the literature. The analytical procedure can provide an accurate and efficient prediction of deflections of high strength steel fiber reinforced concrete members due to cracking under service loads. This procedure also forms the basis for the three dimensional analysis of frames with steel fiber reinforced concrete members.

Development of Tension Stiffening Models for Steel Fibrous High Strength Reinforced Concrete Members (강섬유보강 고강도 철근콘크리트 부재의 인장강성모델 개발)

  • 홍창우;윤경구;이정호;박제선
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.35-46
    • /
    • 1999
  • The steel fiber reinforced concrete may affect substantially to the tension stiffening at post cracking behavior. Even if several tension stiffening models exist, they are for plain and normal strength concrete. Thus, the development of tension stiffening models for steel fibrous high strength RC members are necessary at this time when steel fiber reinforced and high strength concretes are common in use. This paper presents tension stiffening effects from experimental results on direct tension members with the main variables such as concrete strength, concrete cover depth, steel fiber quantity and aspect ratio. The comparison of existing models against experimental results indicated that linear reduced model closely estimated the test results at normal strength level but overestimated at high strength level. Discontinuity stress reduced model underestimated at both strength levels. These existing models were not valid enough in applying at steel fibrous high strength concrete because they couldn't consider the concrete strength nor section area. Thus, new tension stiffening models for high strength and steel fiber reinforced concrete were proposed from the analysis of experimental results, considering concrete strength, rebar diameter, concrete cover depth, and steel fiber reinforcement.

Experimental Investigation on the Blast Resistance of Fiber-Reinforced Cementitious Composite Panels Subjected to Contact Explosions

  • Nam, Jeongsoo;Kim, Hongseop;Kim, Gyuyong
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.29-43
    • /
    • 2017
  • This study investigates the blast resistance of fiber-reinforced cementitious composite (FRCC) panels, with fiber volume fractions of 2%, subjected to contact explosions using an emulsion explosive. A number of FRCC panels with five different fiber mixtures (i.e., micro polyvinyl alcohol fiber, micro polyethylene fiber, macro hooked-end steel fiber, micro polyvinyl alcohol fiber with macro hooked-end steel fiber, and micro polyethylene fiber with macro hooked-end steel fiber) were fabricated and tested. In addition, the blast resistance of plain panels (i.e., non-fiber-reinforced high strength concrete, and non-fiber-reinforced cementitious composites) were examined for comparison with those of the FRCC panels. The resistance of the panels to spall failure improved with the addition of micro synthetic fibers and/or macro hooked-end steel fibers as compared to those of the plain panels. The fracture energy of the FRCC panels was significantly higher than that of the plain panels, which reduced the local damage experienced by the FRCCs. The cracks on the back side of the micro synthetic fiber-reinforced panel due to contact explosions were greatly controlled compared to the macro hooked-end steel fiber-reinforced panel. However, the blast resistance of the macro hooked-end steel fiber-reinforced panel was improved by hybrid with micro synthetic fibers.

Influence of Steel Fiber Volume Ratios on Workability and Strength Characteristics of Steel Fiber Reinforced High-Strength Concrete (강섬유 혼입율이 강섬유보강 고강도 콘크리트의 작업성과 강도특성에 미치는 영향)

  • Kim, Yoon-Il;Lee, Yang-Keun;Kim, Myung-Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.3
    • /
    • pp.75-83
    • /
    • 2008
  • In this paper, concrete material tests were carried out to investigate influence of steel fiber volumn ratios on variations of workability and strength characteristics of steel fiber reinforced high-strength concrete, $50MPa{\sim}90MPa$ of compressive strength, according to increase of fiber volume. Test specimens were arranged with six levels of concrete compressive strength and fiber volumn ratios, 0.0%, 0.5%, 1.0%, 1.5%, 2.0%. The test results showed that steel fiber reinforced high-strength concrete($70MPa{\sim}90MPa$, 1.5% fiber volumn ratio) with good workability of slump 20cm could be used practically and effects of steel fiber reinforcement in improvement of concrete strength and toughness characteristics such as splitting tensile strength, flexural strength, and diagonal tensioned shear strength, were more distinguished in high-strength concrete than general strength concrete. And the test results indicated that splitting tensile strength of fiber reinforced concrete was proportioned to the product of steel fiber volumn ratios, $V_f(%)$ and sqare root of compressive strength, $\sqrt{f_{ck}}$, and the increasing rate was in contrast with that of flexural strength, and increase of diagonal tensioned shear strength was remarkable at steel fiber volumn ratio, 0.5%.

EVALUATION OF SEISMIC SHEAR CAPACITY OF PRESTRESSED CONCRETE CONTAINMENT VESSELS WITH FIBER REINFORCEMENT

  • CHOUN, YOUNG-SUN;PARK, JUNHEE
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.756-765
    • /
    • 2015
  • Background: Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. Methods: The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. Results: The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ~40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. Conclusion: The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers.

Partially encased composite columns using fiber reinforced concrete: experimental study

  • Pereira, Margot F.;De Nardin, Silvana;El. Debs, Ana L.H.C.
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.909-927
    • /
    • 2020
  • This paper addresses the results of an experimental study involving 10 partially encased composite columns under concentric and eccentric compressive loads. Parameters such as slenderness ratio, ordinary reinforced concrete and fiber reinforced concrete, load eccentricity and bending axis were investigated. The specimens were tested to investigate the effects of replacing the ordinary reinforced concrete by fiber reinforced concrete on the load capacity and behavior of short and slender composite columns. Various characteristics such as load capacity, axial strains behavior, stiffness, strains on steel and concrete and failure mode are discussed. The main conclusions that may be drawn from all the test results is that the behavior and ultimate load are rather sensitive to the slenderness of the columns and to the eccentricity of loading, specially the bending axis. Experimental results also indicate that replacing the ordinary reinforced concrete by steel fiber reinforced concrete has no considerable effects on the load capacity and behavior of the short and slender columns and the proposed replacement presented very good results.

Strength and Mechanical Characteristics of Steel-Fiber Reinforced Concrete (강섬유 보강 콘크리트의 강도 및 역학적 특성연구)

  • 오병환;이형준;백신원;임동환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.175-178
    • /
    • 1990
  • Recently, a growing attention is paid to development of new construction materials. The fiber reinforced Concrete is recognized as one of the most promising new construction materials. A comprehensive experimental study was conducted to explore the mechanical behavior of steel fiber reinforced concrete. The major variables in the experiment were the fiber contents and the lengths of steel fibers. The flexural, tensile, and compressive behavior of steel fiber reinforced concrete were investigated. The present study shows that the strength and ductility are remarkably increased with the increase of fiber content. The rate of strength increase due to steel fibers was found to be the highest in tension, the middle in flexure and the lowest in compression. This indicates that the steel fibers play a major role in increasing the tensile capacity.

  • PDF

Flexural Behavior of Fiber-Reinforced Concrete by Fiber Types (보강섬유의 종류에 따른 섬유보강 콘크리트의 휨특성)

  • Kang, Young-Tai;Kim, Gyu-Yong;Lee, Bo-Kyeong;Lee, Sang-Kyu;Kim, Gyeong-Tae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.15-16
    • /
    • 2017
  • In this study, the flexural behavior of fiber-reinforced concrete by fiber type were evaluated. As a result, the flexural strength of the hooked steel fiber-reinforced concrete(HSFRC) was lower than that of the amorphous metallic fiber reinforced concrete(AFRC), however it was shown strain-softening behavior by the pull-out of fiber. The flexural strength and the equivalent flexural strength of polyamide fiber-reinforced concrete(PAFRC) were lower than other specimens, but the equivalent flexural strength ratio was similar to that of AFRC. The flexural behavior of the fiber-reinforced concrete was associated with the bonding and pull-out properties of the fiber and matrix depending on the fiber type.

  • PDF

Prediction of Flexural Capacities of Steel-Fiber Reinforced Concrete Beams (강섬유보강 콘크리트보의 휨내력 예측식의 제안)

  • Kim, Woo-Suk;Kwak, Yoon-Keun;Kim, Ju-Bum
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.361-370
    • /
    • 2006
  • The results of previous tests by many researchers have been compiled to evaluate the flexural strength of steel-fiber reinforced concrete beams. Existing prediction equations for flexural strength of such beams were examined, and a new equation based on mechanical and empirical observations, was proposed. In other words, the constitutive models for steel fiber reinforced concrete(SFRC) were proposed, which incorporate compressive and tensile strength. A steel model might also exhibit stain-hardening characteristics. Predictions based on the model are compared with the experimental data. For the collection of tests, a variation of the Henager equations, modified to apply to fiber-reinforced concrete beams, provided reliable estimates of flexural strength. The proposed equations accounted for the influence of fiber-volume fraction, fiber aspect ratio, concrete compressive strength and flexural steel reinforcement ratio. The proposed equations gave a good estimation for 129 flexural specimens evaluated.