• Title/Summary/Keyword: steel fiber reinforced ultra-high strength concrete

Search Result 90, Processing Time 0.019 seconds

Flexural and Punching Behaviors of Concrete Strengthening with FRP Sheets and Steel Fibers under Low-Velocity Impact Loading (FRP 시트 및 강섬유 보강 콘크리트의 저속 충격에서의 휨 및 펀칭 파괴 거동)

  • Min, Kyung-Hwan;Shin, Hyun-Oh;Yoo, Doo-Yeol;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • In this study, in order to observe the behaviors of fiber reinforced polymer (FRP) strengthened and steel fiber reinforced concrete specimens for impact and static loads, flexural and punching tests were performed. For the one-way flexural and two-way punching tests, concrete specimens with the dimensions of $50{\times}100{\times}350$ mm and $50{\times}350{\times}350$ mm were fabricated, respectively. The steel fiber reinforced concrete specimens showed much enhanced resistance on two-way punching of static and impact loads. In addition the FRP strengthening system provided the outstanding performance under a punching load. Because of a large tensile strength and toughness of ultra high performance concrete (UHPC), the UHPC specimens retrofitted with FRP showed marginally enhanced strength and energy dissipating capacity.

A state of review on manufacturing and effectiveness of ultra-high-performance fiber reinforced concrete for long-term integrity of concrete structures

  • Dongmei Chen;Yueshun Chen;Lu Ma;Md. Habibur Rahman Sobuz;Md. Kawsarul Islam Kabbo;Md. Munir Hayet Khan
    • Advances in concrete construction
    • /
    • v.17 no.5
    • /
    • pp.293-310
    • /
    • 2024
  • Ultra-high-performance fiber-reinforced concrete (UHPFRC) is a form of cement-based material that has a compressive strength above 150 MPa, excellent ductility, and superior durability. This composite material demonstrates innovation and has the potential to serve as a viable substitute for concrete constructions that are subjected to harsh environmental conditions. Over many decades, extensive research and progressive efforts have introduced several commercial UHPFRC compositions globally. These compositions have been specifically designed to cater to an increasing variety of applications and meet the rising need for building materials of superior quality. However, the effective manufacturing of UHPFRC relies on the composition of its materials, especially the inclusion of fiber content and the proportions in the mixture, resulting in a more compact and comparatively uniform packing of particles. UHPFRC has notable benefits in comparison to conventional concrete, yet its use is constrained by the dearth of design codes and the prohibitive expenses associated with its implementation. The study demonstrates that UHPFRC presents a viable, long-lasting option for improving sustainable construction. This is attributed to its outstanding strength properties and superior durability in resisting water and chloride ion permeability, freeze-thaw cycles, and carbonation. The analysis found that a rheology-based mixture design technique may be employed in the production of UHPFRC to provide enough flowability. The study also revealed that the use of deformed steel fibers has shown enhanced mechanical qualities in comparison to straight steel fibers. However, obstacles such as higher initial costs, the requirement for highly specialized personnel, and the absence of comprehensive literature on global UHPFRC standards that establish minimum strength criteria and testing requirements can hinder the widespread implication of UHPFRC. Finally, this review attempts to deepen our foundational conception of UHPFRC, encourages additional study and applications, and recommends an in-depth investigation of the mechanical and durability properties of UHPFRC to maximize its practicality.

Shrinkage Properties of Ultra High Strength Steel Fiber Reinforced Concrete (초고강도 강섬유보강 콘크리트의 수축특성)

  • Koh Kyoung Taek;Pei Chang Chun;Lee Gun Cheol;Kang Soo Tae;Kim Sung Wook;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.647-650
    • /
    • 2005
  • This paper is to investigate the shrinkage properties of ultra high strength concrete(UHSC) incorporating $5\%$ of expansive additives(EA) along with $1\%$ of shrinkage reducing agent(SRA). UHSC subjected to steam curing and incorporated with steel fiber exhibited higher compressive strength than control UHSC by as much as50MPa at 7days, while at 28days, noticeable change in compressive strength was not observed between UHSC mixtures. Control UHSC subjected to steam curing had a $922{\times}10^6$ of autogenous shrinkage strain value, which was 6.7 times of drying shrinkage strain value at 42 days. The combination of EA and SRA resulted in a decrease in autogenous shrinkage by as much as half of control mixture. Steam curing contributed to the reduction of autogenous shrinkage by as much as $11\%$ compared with that of standard curing.

  • PDF

Shear performance of an innovative UHPFRC deck of composite bridge with coarse aggregate

  • Qi, Jianan;Wanga, Jingquan;Feng, Yu
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.219-229
    • /
    • 2019
  • This paper presents an experimental study on the structural performance of an innovative ultra-high performance fiber reinforced concrete (UHPFRC) deck with coarse aggregate of composite bridge under shear force. Test parameters included curing method and shear span-to-height ratio. Test results indicated that more short fine cracks developed beside the existing cracks due to the randomly dispersed fibers, resulting in re-distributing and homogenizing of the concrete stress beside cracks and allowing for the occurrence of more cracks with small spacing compared to normal strength concrete beams. Curing methods, incorporating steam curing and natural curing, did not have obvious effect on the nominal bending cracking strength and the ultimate strength of the test specimens. Shear reinforcement need not be provided for UHPFRC decks with a fiber volume fraction of 2%. UHPFRC decks showed superior load resistance ability after the appearance of cracks and excellent post-cracking deformability. Lastly, the current shear provisions were evaluated by the test results.

Ultimate Shear Capacity of Prestressed Girder of Ultra High Performance Fiber Reinforced Concrete (초고강도 섬유보강 콘크리트 프리스트레스트 거더의 극한 전단력)

  • Han, Sang-Mook;Wu, Xiang-Guo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.51-58
    • /
    • 2008
  • This study is to investigate the ultimate shear load of prestressed girder made of Ultra High Performance Fiber Reinforced Concrete (UHPFRC). Nine girders were tested until failure in shear. An analytical model to predict the ultimate shear load was formulated based on the Two Bounds Theory. A fiber reinforcing model was constituted based on the random assumption of steel fiber uniform distribution. The predicted values were compared with the conventional predictions and the test results. The proposed equations for computing the ultimate shear strength can be used for the ultimate failure status analysis, which could also be utilized for numerical limit analysis of prestressed UHPFRC girder. The established fiber reinforcing theoretical model can also be a reference for micro-mechanics analysis of UHPFRC.

Impact of fine fillers on flowability, fiber dispersion, strength, and tensile strain hardening of UHPC

  • Chung-Chan Hung;Kuo-Wei Wen;Yueh-Ting Chen
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.405-417
    • /
    • 2023
  • While ultra-high performance concrete (UHPC) is commonly reinforced with micro straight steel fibers in existing applications, studies have indicated that the use of deformed steel macro-fibers leads to enhanced ductility and post-peak responses for UHPC structural elements, which is of particular importance for earthquake-resistant structures. However, there are potential concerns regarding the use of UHPC reinforced with macro-fibers due to the issues of workability and fiber distribution. The objective of this study was to address these issues by extensively investigating the restricted and non-restricted deformability, filling ability, horizontal and vertical velocities, and passing ability of UHPC containing macro hooked-end steel fibers. A new approach is suggested to examine the homogeneity of fiber distribution in UHPC. The influences of ultra-fine fillers and steel macro-fibers on the workability of fresh UHPC and the mechanics of hardened UHPC were examined. It was found that although increasing the ratio of quartz powder to cement led to an improvement in the workability and tensile strain hardening behavior of UHPC, it reduced the fiber distribution homogeneity. The addition of 1% volume fraction of macro-fibers in UHPC improved workability, but reduced its compressive strength, which is contrary to the effect of micro-fiber inclusion in UHPC.

Evaluation of Flexural Strength and Ductility of Hybrid Fiber Reinforced UHSC Flexural Members (하이브리드 강섬유 보강 초고강도 콘크리트 휨파괴형 부재의 강도 및 연성 평가에 관한 연구)

  • Yuh, Ok-Kyung;Bae, Baek-Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.61-69
    • /
    • 2019
  • In this study, the flexural strength and curvature ductility factor of single and hybrid fiber reinforced ultra high strength concrete flexural members with conventional steel rebar were evaluated by experimental program with 3-UHSC beams. Test specimens were loaded by 4-pointed flexural loading. According to the test results, hybrid fiber reinforced UHPC test specimens had higher moment resisting capacity and ductility. For the safe design of hybrid fiber reinforced UHPC, test specimens were analyzed according to the sectional analysis method with material models suggested by K-UHPC design recommendation. Current K-UHPC design recommendation predict the moment resisting capacity of member conventionally and over-estimated the ductility.

Control of Tensile Behavior of Ultra-High Performance Concrete Through Artificial Flaws and Fiber Hybridization

  • Kang, Su-Tae;Lee, Kang-Seok;Choi, Jeong-Il;Lee, Yun;Felekoglu, Burak;Lee, Bang Yeon
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.33-41
    • /
    • 2016
  • Ultra-high performance concrete (UHPC) is one of the most promising construction materials because it exhibits high performance, such as through high strength, high durability, and proper rheological properties. However, it has low tensile ductility compared with other normal strength grade high ductile fiber-reinforced cementitious composites. This paper presents an experimental study on the tensile behavior, including tensile ductility and crack patterns, of UHPC reinforced by hybrid steel and polyethylene fibers and incorporating plastic beads which have a very weak bond with a cementitious matrix. These beads behave as an artificial flaw under tensile loading. A series of experiments including density, compressive strength, and uniaxial tension tests were performed. Test results showed that the tensile behavior including tensile strain capacity and cracking pattern of UHPC investigated in this study can be controlled by fiber hybridization and artificial flaws.

Fracture Behavior of UHPC Reinforced with Hybrid Steel Fibers (하이브리드 강섬유로 보강된 UHPC의 파괴거동)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.223-234
    • /
    • 2016
  • In this study, direct tension test for hybrid steel fiber reinforced ultra-high performance concrete (UHPC) containing two different steel fibers with a length of 16 and 19 mm was performed to investigate the fracture behavior of UHPC. Test results showed that crack strength and tensile strength, and fracture energy increased with increasing the fiber volume ratio. Based on the test results, the peak cohesive stress at the crack tip, tensile strength, and fracture energy depending on the fiber volume ratio were proposed. The proposed tensile strength of UHPC was suggested as a function of the fiber volume ratio and compressive strength. The peak cohesive stress at the crack tip and fracture energy were also proposed as a function of the tensile strength. The predicted values were relatively agree well with the test results. Thus, the proposed equations is expected to be applicable to UHPC with a compressive strength of 140~170 MPa and a fiber volume ratio of less than 2%.

Shear strength prediction for SFRC and UHPC beams using a Bayesian approach

  • Cho, Hae-Chang;Park, Min-Kook;Hwang, Jin-Ha;Kang, Won-Hee;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.503-514
    • /
    • 2020
  • This study proposes prediction models for the shear strength of steel fiber reinforced concrete (SFRC) and ultra-high-performance fiber reinforced concrete (UHPC) beams using a Bayesian parameter estimation approach and a collected experimental database. Previous researchers had already proposed shear strength prediction models for SFRC and UHPC beams, but their performances were limited in terms of their prediction accuracies and the applicability to UHPC beams. Therefore, this study adopted a statistical approach based on a collected database to develop prediction models. In the database, 89 and 37 experimental data for SFRC and UHPC beams without stirrups were collected, respectively, and the proposed equations were developed using the Bayesian parameter estimation approach. The proposed models have a simplified form with important parameters, and in comparison to the existing prediction models, provide unbiased high prediction accuracy.