• Title/Summary/Keyword: steel fiber reinforced high-strength concrete

Search Result 324, Processing Time 0.021 seconds

Flexural and Punching Behaviors of Concrete Strengthening with FRP Sheets and Steel Fibers under Low-Velocity Impact Loading (FRP 시트 및 강섬유 보강 콘크리트의 저속 충격에서의 휨 및 펀칭 파괴 거동)

  • Min, Kyung-Hwan;Shin, Hyun-Oh;Yoo, Doo-Yeol;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • In this study, in order to observe the behaviors of fiber reinforced polymer (FRP) strengthened and steel fiber reinforced concrete specimens for impact and static loads, flexural and punching tests were performed. For the one-way flexural and two-way punching tests, concrete specimens with the dimensions of $50{\times}100{\times}350$ mm and $50{\times}350{\times}350$ mm were fabricated, respectively. The steel fiber reinforced concrete specimens showed much enhanced resistance on two-way punching of static and impact loads. In addition the FRP strengthening system provided the outstanding performance under a punching load. Because of a large tensile strength and toughness of ultra high performance concrete (UHPC), the UHPC specimens retrofitted with FRP showed marginally enhanced strength and energy dissipating capacity.

Fire Resistance Performance for Fiber Reinforced High Strength Concrete Column Member (폴리프로필렌 및 강섬유 보강 고강도 콘크리트 기둥부재의 내화성능)

  • Jang, Chang-Il;Lee, Sang-Woo;Choi, Min-Jung;Kim, Joon-Mo;Kim, Heung-Youl;Won, Jong-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.457-460
    • /
    • 2008
  • This study evaluated fire resistance performance for polypropylene/steel fiber reinforced high strength concrete column. Full-size columns were constructed and tested with or without fibers using ISO-834 fire curve. As the result of test, non-fiber high strength concrete column specimen occurred serious spalling and indicated rapidly internal temperature increase. Specimen with polypropylene fiber occurred not spalling. Specimen with hybrid fiber occurred not spalling as well as does not propagated temperature propagation. Therefore, hybrid fiber reinforced column specimen indicated a good fire resistance performance than other cases.

  • PDF

Shear strength prediction for SFRC and UHPC beams using a Bayesian approach

  • Cho, Hae-Chang;Park, Min-Kook;Hwang, Jin-Ha;Kang, Won-Hee;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.503-514
    • /
    • 2020
  • This study proposes prediction models for the shear strength of steel fiber reinforced concrete (SFRC) and ultra-high-performance fiber reinforced concrete (UHPC) beams using a Bayesian parameter estimation approach and a collected experimental database. Previous researchers had already proposed shear strength prediction models for SFRC and UHPC beams, but their performances were limited in terms of their prediction accuracies and the applicability to UHPC beams. Therefore, this study adopted a statistical approach based on a collected database to develop prediction models. In the database, 89 and 37 experimental data for SFRC and UHPC beams without stirrups were collected, respectively, and the proposed equations were developed using the Bayesian parameter estimation approach. The proposed models have a simplified form with important parameters, and in comparison to the existing prediction models, provide unbiased high prediction accuracy.

Material Properties and Structural Characteristics on Flexure of Steel Fiber-Reinforced Ultra-High-Performance Concrete (강섬유 보강 초고성능 콘크리트의 재료특성 및 휨 거동 역학적 특성)

  • Kim, Kyoung-Chul;Yang, In-Hwan;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.177-185
    • /
    • 2016
  • This paper concerns the flexural behavior of steel fiber-reinforced ultra-high-performance concrete (UHPC) beams with compressive strength of 150 MPa. It presents experimental research results of hybrid steel fiber-reinforced UHPC beams with steel fiber content of 1.5% by volume and steel reinforcement ratio of less than 0.02. This study aims at investigating of compressive and tensile behavior of UHPC to perform a reasonable prediction for flexural capacity of UHPC beams. Tensile behavior modeling was performed using load-crack mouth opening displacement relationship obtained from bending test. The experimental results show that steel fiber-reinforced UHPC is in favor of cracking resistance and ductility of beams. The ductility indices range from 1.6 to 3.0, which means high ductility of hybrid steel fiber-reinforced UHPC. Test results and numerical analysis results for the moment-curvature relationship are compared. Though the numerical analysis results for the bending capacity of the UHPC beam without rebar is larger than test result, the overall comparative results show that the bending capacity of steel fiber-reinforced UHPC beams with compressive strength of 150 MPa can be predicted by using the established method in this paper.

Deformation Characteristics of Reinforced Polymer Concrete Beams (철근보강 폴리마 콘크리트보의 변형특성)

  • 연규석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.1
    • /
    • pp.63-72
    • /
    • 1988
  • The primary objective of the study was to find the deformation characteristics of reinforced polymer concrete beams. A test program was carried out to compare the behavior in deformation of polyester and MMA concrete beams with cement concrete beams but with varying ratios of tensile reinforcement. From the results the following conclusions can be made. 1.The various strengths of polymer concrete ware very high compared to the strengths for cement concrete. Also, compared to conventional concrete beams, flexural strength of reinforced polymer concrete beams was distinctly higher for the same section and steel ratios. 2.The polymer concrete beams exhibit large deflections accompanied by relatively high strengths as compared to cement concrete beams. 3.The average ultimate strain at the extreme compression fiber of polymer concrete beams was 0.01 1 cm / cm, and this value was about three to four times as large as that of cement concrete beams, 4.The polymer concrete beams developed more cracks which were more wide crack distribution spacing than the cement concrete beams, and the beams failed in a more ductile manner. 5.The reinforcing steel ratio has a significant effect on the beam strength, load-deflection response, stress-strain curve, and crack pattern of polymer concrete beams.

  • PDF

An Experimental Study on the Mechanical Properties and Long-Term Deformations of High-Strength Steel Fiber Reinforced Concrete (고강도 강섬유보강 콘크리트의 역학적 특성 및 장기변형 특성에 관한 실험적 연구)

  • Yoon, Eui-Sik;Park, Seung-Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.401-409
    • /
    • 2006
  • This study presents basic information on the mechanical properties and long-term deformations of high-strength steel fiber reinforced concrete(HSFRC). The Influence of steel fiber on modulus of elasticity, compressive, splitting tensile and flexural strength, and drying shrinkage and creep of HSFRC are investigated, and flexural fracture toughness is evaluated. Test results show that Test results show that the effect of steel fibers on the compressive strength is negligible, and the modulus of elasticity of HSFRC increased with the increase of fiber volume fraction. And the effect of fiber volume fraction($V_f$) and aspect ratio($l_f/d_f$) on tensile strength, flexural strength and toughness is extremely prominent. It is observed that the flexural deflection corresponded to ultimate load increased with the increase of $V_f$ and $l_f/d_f$, and due to fiber arresting cracking, the shape of the descending branch of load-deflection tends towards gently. Also, the effect of addition of various amounts of fiber on the creep and shrinkage is obvious. Especially, the effect of adding fibers to high-strength concrete is more pronounced in reducing the drying shrinkage than the creep.

Research on eccentric compression of ultra-high performance fiber reinforced concrete columns

  • Ma, Kaize;Ma, Yudong;Liu, Boquan
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.211-221
    • /
    • 2019
  • To study the eccentric compression behavior of ultra-high performance fiber reinforced concrete (UHPFRC) columns, six UHPFRC columns and one high-strength concrete (HSC) column were tested. Variation parameters include load eccentricity, volume of steel fibers and stirrup ratio. The crack pattern, failure mode, bearing capacity, and deformation of the specimens were studied. The results showed that the UHPFRC columns had different failure modes. The large eccentric compression failure mode was the longitudinal tensile reinforcements yielded and many horizontal cracks appeared in the tension zone. The small eccentric compression failure mode was the longitudinal compressive reinforcements yielded and vertical cracks appeared in the compressive zone. Because of the bridging effect of steel fibers, the number of cracks significantly increased, and the width of cracks decreased. The load-deflection curves of the UHPFRC columns showed gradually descending without sudden dropping, indicating that the specimens had better deformation. The finite element (FE) analysis was performed to stimulate the damage process of the specimens with monotonic loading. The concrete damaged plasticity (CDP) model was adopted to characterize the behaviour of UHPFRC. The contribution of the UHPFRC tensile strength was considered in the bearing capacity, and the theoretical calculation formulas were derived. The theoretical calculation results were consistent with the test results. This research can provide the experimental and theoretical basis for UHPFRC columns in engineering applications.

Experimental Study on Shear Strength of Steel Fiber Reinforced Concrete Beams (강섬유로 보강된 콘크리트 보의 전단강도에 관한 실험적 연구)

  • Kal, Kyoung-Wan;Kim, Kang-Su;Lee, Deuck-Hang;Hwang, Jin-Ha;Oh, Young-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.160-170
    • /
    • 2010
  • Steel Fiber Reinforced Concrete (SFRC) beams has greater shear strength than typical reinforced concrete beams due to the high tensile strength of steel fibers. In this research, an experiment has been conducted to investigate the shear behavior of SFRC beams, and especially, the portion of shear resistance by uncracked compressive concrete section has been measured. Based on the test results in this study and 87 test data collected from literature, the accuracy of the existing equations for the estimation of shear strength has been evaluated. The shear strength of SFRC beams increased as more steel fibers were mixed. However, it is considered that the most efficient amount of steel fiber for enhancement of shear strength would be between 1% and 2% in that the specimen with 0.5% of steel fibers were abruptly failed after inclined cracking, and that the specimen with 2.0% of steel fibers showed a relatively low efficiency in increasing shear strength. The portion of shear resistance by the uncracked compressive concrete section was measured to be greater than 21%, and the equation proposed by Oh et al. provided the best accuracy on the estimation of shear strength of SFRC beams among the approaches evaluated in this study.

Influence of Constitute Factor on the Compressive Strength of Ultra-High Strength Steel Fiber Reinforced Cementitious Composites (초고강도 강섬유 보강 시멘트 복합체의 구성인자가 압축강도에 미치는 영향)

  • Park Jung-Jun;Koh Kyung-Taek;Kang Su-Tae;Kim Sung-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.35-41
    • /
    • 2005
  • Recently, various fiber reinforced cementitious composites are used in order to solve problems of concrete as the brittleness breaking. Especially, in U.S.A., Europe, and Japan, ultra-high strength steel fiber reinforced cementitious composites(ultra-high strength SFRCC) with compressive strength in excess of 100 MPa were developed. However few studies have been investigated on the high-strength SFRCC in Korea. Therefore, in this paper, to make ultra-high strength SFRCC with the range of compressive strength 180MPa, it was investigated the constitute factors of ultra-high strength SFRCC influenced on the compressive strength. The experimental variables were water-binder ratio, replacement of silica fume, size and proportion of sand, type and replacement of filling powder, and using of steel fiber in ultra-high strength SFRCC. As a result, in water-binder ratio 0.20, we could make ultra-high strength SFRCC with compressive strength of 180MPa through using of silica fume, quartz sand with below 0.5mm filling powder and steel fiber.

Reinforced high-strength concrete square columns confined by aramid FRP jackets -part II: modeling

  • Wu, Han-Liang;Wang, Yuan-Feng;Ma, Yi-Shuo
    • Steel and Composite Structures
    • /
    • v.11 no.4
    • /
    • pp.325-340
    • /
    • 2011
  • Based on the experimental data presented in part I of these companion papers, a semi-empirical model is proposed for axial stress-strain curves of reinforced high-strength concrete square columns confined by aramid fiber reinforced polymer (FRP) jackets. Additionally, a three-dimensional finite element model is developed to simulate the mechanical behaviors of the columns. In the finite element model, both material nonlinear and contact nonlinear are taken into account. Moreover, the influence of contact nonlinear (i.e., the end friction on the contact surface between test machines and specimens) is investigated deeply. Predictions from both the semi-empirical model and the finite element model agree with the experimental results, and it is also demonstrated that the friction coefficient of end friction notably affect the properties of columns when it ranges from 0.00 to 0.25.