• Title/Summary/Keyword: steel fiber mix

Search Result 75, Processing Time 0.026 seconds

Investigation of steel fiber effects on concrete abrasion resistance

  • Mansouri, Iman;Shahheidari, Farzaneh Sadat;Hashemi, Seyyed Mohammad Ali;Farzampour, Alireza
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.367-374
    • /
    • 2020
  • Concrete surfaces, industrial floors, sidewalks, roads and parking lots are typically subjected to abrasions. Many studies indicated that the abrasion resistance is directly related to the ultimate strength of the cured concrete. Chemical reactions, freeze-thaw cycles, and damages under abrasion are among many factors negatively affecting the concrete strength and durability. One of the major solutions to address the abrasive resistance of the concrete is to use fibers. Fibers are used in the concrete mix to improve the mechanical properties, strength and limit the crack propagations. In this study, implementation of the steel fibers in concrete to enhance the abrasive resistance of the concrete is investigated in details. The abrasive resistance of the concrete with and without steel fibers is studied with the sandblasting technique. For this purpose, different concrete samples are made with various hooked steel fiber ratios and investigated with the sandblasting method for two different strike angles. In total, 144 ASTM verified cube samples are investigated and it is shown that those samples with the highest steel fiber ratios have the highest abrasive resistance. In addition, the experiments determine that there is a meaningful correlation between the steel fiber percentage in the mix, strike angle and curing time which could be considered for improving structural behavior of the fiber-reinforced concrete.

Experimental investigation on self-compacting concrete reinforced with steel fibers

  • Zarrin, Orod;Khoshnoud, Hamid Reza
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.133-151
    • /
    • 2016
  • Self-Compacting Concrete (SCC) has been originally developed in Japan to offset a growing shortage of skilled labors, is a highly workable concrete, which is not needed to any vibration or impact during casting. The utilizing of fibers in SCC improves the mechanical properties and durability of hardened concrete such as impact strength, flexural strength, and vulnerability to cracking. The purpose of this investigation is to determine the effect of steel fibers on mechanical performance of traditionally reinforced Self-Competing Concrete beams. In this study, two mixes Mix 1% and Mix 2% containing 1% and 2% volume friction of superplasticizer are considered. For each type of mixture, four different volume percentages of 60/30 (length/diameter) fibers of 0.0%, 1.0%, 1.5% and 2% were used. The mechanical properties were determined through compressive and flexural tests. According to the experimental test results, an increase in the steel fibers volume fraction in Mix 1% and Mix 2% improves compressive strength slightly but decreases the workability and other rheological properties of SCC. On the other hand, results revealed that flexural strength, energy absorption capacity and toughness are increased by increasing the steel fiber volume fraction. The results clearly show that the use of fibers improves the post-cracking behavior. The average spacing of between cracks decrease by increasing the fiber volume fraction. Furthermore, fibers increase the tensile strength by bridging actions through the cracks. Therefore, steel fibers increase the ductility and energy absorption capacity of RC elements subjected to flexure.

Investigation of Fiber Distribution in Concrete Batches Discharged from Ready-Mix Truck

  • Sorensen, Christian;Berge, Egil;Nikolaisen, Eirik B.
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.4
    • /
    • pp.279-287
    • /
    • 2014
  • This paper presents the findings of an investigation of the fiber content variations in concrete being discharged from a ready-mix truck at the construction site. Concrete samples were extracted from the truck drums at the beginning, middle and end of discharge. Subsequently, fibers in each sample were separated from the concrete, and weighed. Presumably, synthetic macro fibers will float towards the top, i.e. towards the drum opening, of the inclined, revolving truck-drum, while, on the other hand, steel fibers will tend to gravitate towards the lower parts of the mixer drum. Accordingly, the discharge batch, containing synthetic macro fibers, will contain a higher amount of synthetic fibers per unit volume at the start of discharge than the average unit volume fiber content of the mix, and the content will gradually decrease further down the batch. The discharge batch of steel fiber concrete will contain fewer fibers per unit volume at the start of discharge than the average unit volume fiber content of the mix, and the content should gradually increase further down the batch. The correctness of the foregoing is partly confirmed. A certain percentage of the truck loads did not comply with the proposed requirements, mainly steel fiber reinforced batches, indicating the necessity of a code or guideline amendment. A change in the Norwegian shotcrete directive was made in 2011, based upon experimental research work (2010), which, in combination with the subsequent University of Life Sciences report (2012), constitutes the foundation of this article.

Behaviour of fiber reinforced concrete beams with spliced tension steel reinforcement

  • Safan, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.623-636
    • /
    • 2012
  • The aim of the current work is to describe the flexural behaviour of simply supported concrete beams with tension reinforcement spliced at mid-span. The parameters included in the study were the type of the concrete, the splice length and the configuration of the hooked splice. Fifteen beams were cast using an ordinary concrete mix and two fiber reinforced concrete mixes incorporating steel and polypropylene fibers. Each concrete mix was used to cast five beams with continuous, spliced and hooked spliced tension steel bars. A test beam was reinforced on the tension side with two 12 mm bars and the splice length was 20 and 40 times the bar diameter. The hooked bars were spliced along 20 times the bar diameter and provided with 45-degree and 90-degree hooks. The test results in terms of cracking and ultimate loads, cracking patterns, ductility, and failure modes are reported. The results demonstrated the consequences due to short splices and the improvement in the structural behaviour due to the use of hooks and the confinement provided by the steel and polypropylene fibers.

Mechanical Properties of Concrete Pavement by Low Fraction of Macro Fiber (매크로 섬유의 저혼입에 따른 콘크리트 포장의 역학적 특성)

  • Choi, Sung-Yong;Park, Young-Hwan;Jung, Woo-Tai;Park, Jong-Sup
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.1-11
    • /
    • 2012
  • PURPOSES : The purpose of the study was to examine dynamic features of concrete after mixing a little macro fiber with small aspect ratio and long length utilized for bridge, tunnel and shotcrete for tensile performance and crack control in domestic/overseas countries with cement concrete pavement mix. METHODS : Coarse aggregates with small aspect ratio and macro fibers with maximum length of approximately 32 mm are introduced in small quantities in the mix proportions of concrete pavement so as to prevent loss of the workability. Then, this study intends to evaluate the applicability of macro fibers in the mix proportions of concrete pavement by examining the basic construction performance, as well as the change of toughness, the equivalent bending strength and the flexural toughness index caused by compression, bending, tension and the flexural stress-displacement curve. RESULTS : As the results, in each kind of macro fiber, polyvinyl alcohol fiber and steel fiber displayed a good performance. CONCLUSIONS : In 0.2 and 0.3% of fiber contents, it is appeared that polyvinyl alcohol fiber has a large effect on improvement of tensile performance and steel fiber on improvement of deforming performance of bending stress.

A development of modification program for steel fiber reinforced shotcrete during design and construction stages (강섬유 숏크리트의 설계 및 시공에 대한 문제점 및 개선방향에 대한 연구)

  • Kim, Sang-Hwan;Youn, Seung-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.48-57
    • /
    • 2009
  • The quality control of tunnel support construction is very important to maintain a long term stability of tunnel. Especially, steel fiber reinforced shotcrete should be necessary to investigate practically the condition of quality control in the construction site. In order to perform this study, the design criteria and specifications relevant to steel fiber reinforced shotcrete are reviewed. And the comparison is made between the bearing capacity of the several shotcrete layers, based on the equivalence of the bending moments. Eight tunnel construction sites are also investigated carefully to examine and analyse the characteristics of steel fiber reinforced shotcrete especially including strength and mixing condition of steel fiber. Based on the results, it is founded the items to be improved in the future. In addition, the modification program for the specifications of steel fiber reinforced shotcrete is suggested.

  • PDF

Optimal Mix Proportion of Steel Fiber and Hybrid Fiber Reinforced Concrete Using Harmony Search (화음탐색법을 이용한 강섬유 및 하이브리드 섬유보강 콘크리트의 최적배합 설계)

  • Lee, Chi-Hoon;Lee, Joo-Ha;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.280-283
    • /
    • 2004
  • Today, the guide line of the SFRC mix design and the construction was not embodied, and the convenience of the practical application on the spot is not good. In this research, hence, the program which is optimized to result the mix proportion by the flexural strength and toughness, was developed to apply with ease SFRC on the practical spot. This program would minimize the number of trial mixes and achieve an economical and appropriate mixture. In addition, the theoretical background on which the program is based, will be the basis of the embodied method to mixing SFRC. New algorithm, in this research, was used to develop the mix proportioning program of SFRC. The new algorithm is the Harmony Search which is the heuristic method mimicking the improvisation of music players. And, beside to single fiber reinforced concrete, it was developed the program about the hybrid fiber reinforced concrete that two kinds of steel fibers, which have the different geometry, was reinforced. This will be able to keep the world trend to study, hence, offers the basis of the next generation research.

  • PDF

Characteristics of Flexural Behavior of high Strength Concrete According to the Mixture Rate of Steel Fiber (강섬유 혼입율에 따른 고강도 콘크리트의 휨 거동 특성)

  • Chio, Jung-Gu;Lee, Gun-Cheol;Lee, Gun-Young;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.82-83
    • /
    • 2015
  • Recently, the research on steel fiber reinforced concrete has been actively conducted to compensate the defect of brittle fracture of concrete and to enhance toughness. Therefore, the effect of the mixture rate of straight steel fiber on flexural behavior of high strength steel fiber reinforced concrete was evaluated in this research. As a result, when 2% of steel fiber was mixed with concrete volume ratio, it showed the best flexural capacity.

  • PDF

Studies on the Properties of Fiber Reinforced Porous Concrete Using Polymer (섬유보강 폴리머 포러스콘크리트의 특성에 관한 실험적 연구)

  • Park, Seong-Bum;Lee, Byung-Jae;Lee, Jun;Son, Sung-Woo;Cho, Kwang-Yeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.581-584
    • /
    • 2006
  • This study is analyzed mechanical properties and durability of permeability porous concrete to mix polymer and steel fiber for the enhance of performance and durability of porous concrete. It proves that void ratio and permeability are tallied with internal and external standard of paving porous concrete. A property of strength is increased according as the mixing rate of polymer and steel fiber increase, but it showed the tendency to be reduced on the contrary when mixed upwards of 20% of polymer mixing rate and 0.9vol.% of steel fiber mixing rate. As a result, it is possible to make an enhanced which increased 16% of compressive strength and 30% of flexural strength steel fiber reinforced polymer porous concrete at the mixing rate of 10vol.% of polymer and 0.6% of steel fiber.

  • PDF

Effect of steel fibers on surface electric resistivity of steel fiber reinforced concrete for shield segment (강섬유보강 콘크리트 세그먼트의 강섬유가 표면전기저항에 미치는 영향)

  • Moon, Do-Young;Lee, Gyu-Phil;Chang, Soo-Ho;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.557-569
    • /
    • 2011
  • Steel Fiber Reinforced Concrete (SFRC) is widely used for tunnel structures such as shotcrete and segments. Corrosion of steel fibers and steel reinforcements may affect on the long-term durability of the concrete structures with steel fibers and reinforcement. Therefore, a study on the feasible method to evaluate corrosion possibility and permeability of the concrete structures is required. This experimental study examines the effect of steel fibers and internal reinforcement on the surface resistivity. Steel fiber mix ratio and corrosion of internal reinforcement were considered as variables. In the results, steel fibers significantly reduce the surface resistivity due to those conductive characteristic. In the case of 3% mix ratio, it was difficult to evaluate rate and permeability of corrosion due to the great reduction of resistivity by mixing of steel fibers.