• Title/Summary/Keyword: steel construction

Search Result 4,374, Processing Time 0.032 seconds

Bond Strength between Concrete and Steel and Shear Behavior of Shear Connectors of H-shaped Steel Encased Composite Columns (H형강 매입형 합성기둥의 부착강도 및 전단연결재의 전단거동)

  • Wang, Ning;Lee, Hye Lim;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.377-387
    • /
    • 2017
  • The objective of this study is to investigate the influence that how does contact surface between concrete and steel influence the steel encased composite column by push-out test. Also nominal bond stress indicated by design standard such as Eurocode 4 is underestimated in small scale steel encased composite column. The other objective of this study is to investigate how does the number and space of shear connector influence the H-shaped steel encased composite column. The shear behavior of shear connectors is investigated by push-out test.

Bond performance between metakaolin-fly ash-based geopolymer concrete and steel I-section

  • Hang Sun;Juan Chen;Xianyue Hu
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.529-543
    • /
    • 2024
  • The bonding efficacy of steel I-section embedded in metakaolin-fly ash-based geopolymer concrete (MK-FA-GC) was investigated in this study. Push-out tests were conducted on nine column specimens to evaluate the influence of compressive strength of concrete, embedded length of steel I-section, thickness of concrete cover, and stirrup ratio on the bond performance. Failure patterns, load-slip relationships, bond strength, and distribution of bond stress among the specimens were analyzed. The characteristic bond strength of geopolymer concrete (GC) increased with higher compressive strength, longer embedded steel section length, thicker concrete cover, and larger stirrup ratio. Empirical formulas for bond strength at the loading end were derived based on experimental data and a bond-slip constructive model for steel-reinforced MK-FA-GC was proposed. The calculated bond-slip curves showed good agreement with experimental results. Furthermore, numerical simulations using ABAQUS software were performed on column specimens by incorporating the suggested bond-slip relationship into connector elements to simulate the interface behavior between MK-FA-GC and the steel section. The simulation results showed a good correlation with the experimental findings.

Basic study of algorithm for steel quantity analysis of composite precast concrete members (합성 PC 부재의 철골 물량산출 알고리즘 기초연구)

  • Kim, Gyeongju;Lim, Chaeyeon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.96-97
    • /
    • 2014
  • Green Frame is a column-beam structure built by steel frame joints embedded in the columns and beams. Here, the steel frame embedded in the columns and beams is not a standardized product, instead it needs to be order-produced. The quantity for each steel frame size should be calculated to estimate the quantity of steel frames to be manufactured. However, it is highly time-consuming and requires a lot of effort in calculating the quantity of steel frames, for there are a wide range of steel frame types that are embedded in the columns and beams. To solve this problem, the study proposes an algorithm for calculation of the amount of steel frames with ease and promptness. When a program is developed using the algorithm proposed in the study in connection to the information on precast concrete members prepared in the design phase, it is anticipated that the manpower required as well as the manufacturing time will be decreased.

  • PDF

Performance of cold-formed steel wall frames under compression

  • Pan, Chi-Ling;Peng, Jui-Lin
    • Steel and Composite Structures
    • /
    • v.5 no.5
    • /
    • pp.407-420
    • /
    • 2005
  • This study presents the strength of braced and unbraced cold-formed steel wall frames consisting of several wall studs acting as columns, top and bottom tracks, and bracing members. The strength and the buckling mode of steel wall frames were found to be different due to the change of bracing type. In addition, the spacing of wall studs is a crucial factor to the strength of steel wall frames. The comparisons were made between the test results and the predictions computed based on AISI Code. The related specifications do not clearly provides the effective length factors for the member of cold-formed steel frame under compression. This paper proposes effective length factors for the steel wall frames based on the test results. A theoretical model is also derived to obtain the modulus of elastic support provided by the bracing at mid-height of steel wall frames in this research.

Effect of Mixed Inhibitor on Corrosion Inhibition of Steel Rebar in Chloride Contaminated Concrete Pore Solution (염화물 오염 콘크리트 공극 용액에서 철근의 부식 억제에 대한 혼합 억제제의 효과)

  • Mandal, Soumen;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.32-33
    • /
    • 2021
  • The corrosion of the embedded steel rebars and the consequent deterioration of the reinforced concrete structure has become a challenging concern to the construction industries for the fiscal deficit. However, corrosion inhibitors are potential and being widely used for corrosion mitigation to solve such problems. This study has been focused on the mixed type of corrosion inhibitor where one component of the corrosion inhibitor is organic and another one is inorganic material. 0.1 (M) triethanolamine (TEA) and 0.01 (M) sodium hexametaphosphate (SHMP) have been mixed in distilled water to produce the mixed inhibitor. Studies of the steel rebar corrosion in chloride contaminated (3.5 wt.% NaCl) concrete pore (CCCP) solution has been conducted using different concentrations of corrosion inhibitor. Electrochemical impedance spectroscopy (EIS) method is involved to understand the corrosion behaviour of the steel rebars at different exposure durations.

  • PDF

Field Application of Up-Up Construction Using Buried Wale Continuous Walt System Method (CWS공법(Buried Wale Continuous Wall System)을 적용한 Up-Up 시공사례)

  • Lee Jeong-Bae;Lim In-Sig;Kim Dong-Hyun;Oh Bo-Hwan;Ha In-Ho;Rhim Hong-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.1-4
    • /
    • 2006
  • A down construction method is frequently used in these days to reduce popular discontent and to assure sufficient working space at early stage in downtown area. There are two main problems in the existing down construction method. One is a confliction between frame works and excavation works, and the other is a cold joint in retaining wall which is unavoidable due to a sequence of concrete placement and induces a water leakage. Therefore, a new method is needed to overcome these problems. The CWS (buried wale Continuous Wall System) method was developed by authors. By replacing RC perimeter beam with embedded steel wale, the steel frame works of substructure can be simplified and the water leakage can be prevented using continuous retaining wall. Consequently, the improved duality and reduction of construction period can be obtained from CWS method.

  • PDF

Material Properties of Structural Steel used in Modern Bridge Structures (근대 교량 구조물에 사용된 강재의 재료적 특성)

  • Lee, Il-Sung;Song, Jong-Mok;Ahn, Jae-Cheol;Kim, Ki-Soo;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.241-242
    • /
    • 2011
  • The purpose of this study is for leaving the technical record of cultural heritage as analysis of material property mainly the structure steel used in modern domestic bridge. Result of this study, Structural Steel used in Modern Bridge Structures indicates different figuration and property with the times.

  • PDF

Measurement of Setting Times of Steel Fiber Reinforced Mortar using Electric-mechanical Impedance Sensing Technique (전기역학적 임피던스 기법을 이용한 강섬유 보강 모르타르의 응결시간 평가)

  • Lee, Jun Choel;Kim, Wha Jung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.183-184
    • /
    • 2016
  • This study investigated the evolution of electro-mechanical impedance (EMI) of piezoelectricity (PZT) sensor embedded in hydrating steel fiber reinforced mortar to determine the setting times of that. Penetration resistance test was also conducted in order to justify the valid of EMI sensing technique. As a result, the setting times of steel fiber reinforced mortar can be effectively monitored through the EMI sensing technique using PZT sensor.

  • PDF

Seismic behavior of steel reinforced concrete (SRC) joints with new-type section steel under cyclic loading

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1561-1580
    • /
    • 2015
  • No significant improvement has been observed on the seismic performance of the ordinary steel reinforced concrete (SRC) columns compared with the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type section steel were put forward on this background: a cross-shaped steel whose flanges are in contact with concrete cover by extending the geometry of webs, and a rotated cross-shaped steel whose webs coincide with diagonal line of the column's section. The advantages of new-type SRC columns have been proved theoretically and experimentally, while construction measures and seismic behavior remain unclear when the new-type columns are joined onto SRC beams. Seismic behavior of SRC joints with new-type section steel were experimentally investigated by testing 5 specimens subjected to low reversed cyclic loading, mainly including the failure patterns, hysteretic loops, skeleton curves, energy dissipation capacity, strength and stiffness degradation and ductility. Effects of steel shape, load angel and construction measures on seismic behavior of joints were also analyzed. The test results indicate that the new-type joints display shear failure pattern under seismic loading, and steel and concrete of core region could bear larger load and tend to be stable although the specimens are close to failure. The hysteretic curves of new-type joints are plumper whose equivalent viscous damping coefficients and ductility factors are over 0.38 and 3.2 respectively, and this illustrates the energy dissipation capacity and deformation ability of new-type SRC joints are better than that of ordinary ones with shear failure. Bearing capacity and ductility of new-type joints are superior when the diagonal cross-shaped steel is contained and beams are orthogonal to columns, and the two construction measures proposed have little effect on the seismic behavior of joints.

The Maximum Strength of Stainless Steel Rectangular Hollow Section Columns and Beam-Columns (스테인리스 각형강관기둥의 최대내력)

  • Lee, Myung Jae;Kim, Hee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.73-82
    • /
    • 2005
  • The objective of this study is to investigate the maximum strength of stainless steel rectangular hollow section columns and beam-columns by using numerical analysis. Stress-strain relationships are modeled based on coupon tests results, and their influences on the maximum strength of columns and beam-columns are discussed. The analysis results are compared with the formula for the limit state design code of steel structures. It is ascertained that the design code for the stainless steel is needed to use stainless steel for the members of architectural structures.