• Title/Summary/Keyword: steel column

Search Result 1,925, Processing Time 0.026 seconds

Research on axial bearing capacity of cold-formed thin-walled steel built-up column with 12-limb-section

  • Wentao Qiao;Yuhuan Wang;Ruifeng Li;Dong Wang;Haiying Zhang
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.437-450
    • /
    • 2023
  • A half open cross section built-up column, namely cold-formed thin-walled steel built-up column with 12-limbsection (CTSBC-12) is put forward. To deeply reveal the mechanical behaviors of CTSBC-12 under axial compression and put forward its calculation formula of axial bearing capacity, based on the previous axial compression experimental research, the finite element analysis (FEA) is conducted on 9 CTSBC-12 specimens, and then the variable parameter analysis is carried out. The results show the FEA is in good agreement with the experimental research, the ultimate bearing capacity error is within 10%. When the slenderness ratio is more than 96.54, the ultimate bearing capacity of CTSBC-12 decreases rapidly, and the failure mode changes from local buckling to global buckling. With the local buckling failure mode unchanged, the ultimate bearing capacity decreases gradually as the ratio of web height to thickness increases. Three methods are used for calculating the ultimate bearing capacity, the direct strength method of AISI S100-2007 gives result of ultimate axial load which is closest to the test and FEA results. But for simplicity and practicality, a simplified axial bearing capacity formula is proposed, which has better calculation accuracy with the slenderness ratio changing from 30 to 100.

Friction-based beam-to-column connection for low-damage RC frames with hybrid trussed beams

  • Colajanni, Piero;Pagnotta, Salvatore
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.231-248
    • /
    • 2022
  • Hybrid Steel-Trussed Concrete Beam (HSTCB) is structural typology suitable for light industrialization. HSTCBs usually cover long span with small depths, which lead to significant amount of longitudinal rebars. The latter make beam-column joints more prone to damage due to earthquake-induced cyclic actions. This phenomenon can be avoided using friction-based BCCs. Friction devices at Beam-to-Column Connections (BCCs) have become promising solutions to reduce the damage experienced by structural members during severe earthquakes. Few solutions have been developed for cast-in-place Reinforced Concrete (RC) and steel-concrete composite Moment Resisting Frames (MRFs), because of the difficulty of designing cost-effective damage-proof connections. This paper proposes a friction-based BCC for RC MRFs made with HSTCBs. Firstly, the proposed connection is described, and its innovative characteristics are emphasized. Secondly, the design method of the connection is outlined. A detailed 3D FE model representative of a beam-column joint fitted with the proposed connection is developed. Several monotonic and cyclic analyses are performed, investigating different design moment values. Lastly, the numerical results are discussed, which demonstrate the efficiency of the proposed solution in preventing damage to RC members, and in ensuring satisfactory dissipative capacity.

A Study on the Structural Behavior of Eccentrically Loaded Steel Column Base Plates (편심 축하중을 받는 강구조 주각부의 거동에 관한 연구)

  • Lee, Seung Joon;Song, Hyun Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.323-332
    • /
    • 2008
  • The behavior of eccentrically loaded steel column base plates is investigated experimentally and analytically. A total of 8 test specimens are fabricated and tested. The effects of eccentricity and thickness of baseplate on the behavior of base plates are investigated. Analytical study is performed using the Finite Element Analysis Program ANSYS 8.1 to investigate distribution of bearing pressure. The results from to the distribution of bending strain of the base plate. However, the distribution of the bearing pressure obtained from the analysis is different from that assumed in the current design method. The results from the analysis show that the bearing pressures of the baseplate are concentrated under the compressively stressed column flange, as the eccentricity is increased. Also the results from the analysis are different from the results of design using the existing design method and the design method according to the AISC-Steel Design Guide.

Experimental Evaluation of New Seismic Connections between Rectangular Steel Tube Column and H-shaped Beam (각형강관 기둥-H형강 보 신형상 내진접합부의 실험적 평가)

  • Jin, Jooho;Kim, DooHwan;Kim, Hyunsook;Shin, Jinwon;Park, Kooyun;Lee, Kyungkoo
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.77-85
    • /
    • 2018
  • A through diaphragm is often used to ensure their stiffness for moment-resisting connections using rectangular steel-tube column and H-shaped beam. The through-diaphragm connections, however, have some difficulties for their applicabilities to the field due to the complexity of the fabrication and construction processes. This study thus proposes a new modular system of steel structures assembled only using bolts without welding, by bringing a connection module composed of rectangular steel-tube column, H-shaped beam and oneway bolt onto the site. An experimental study to evaluate the seismic performance of the proposed connection details based on the new modular system is then conducted. The length and type of the inner reinforcement plate are considered as the primary design parameters, and the strength, stiffness, ductility and energy dissipation capability of the new connections are experimentally analyzed by comparison to those of conventional through diaphragm connections.

Characteristics of Hysteretic Behavior of Circular Steel Column using SM490 for Loading Rate (재하속도에 따른 SM490강재 원형강기둥의 이력거동 특성)

  • Jang, Gab Chul;Chang, Kyong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.935-941
    • /
    • 2006
  • The hysteretic behavior of steel structure under cyclic and dynami loading such as earthquake is different to that under static loading. Because structural steels on dynamic deformation is different to static deformation with respect with mechanical characteristics and stress-strain relationship. Therefore, to accurately predict the hysteretic behavior of steel structures such as circular steel columns under cyclic and dynamic loading, the difference of loading carrying capacity and deformation according to loading rate, assumed static and dynamic deformation state, must be investigated. In this study, numerical analyses of circular steel column using SM490 for change of loading rate and diameter-thickness ratio(D/t) were carried out by using three-dimensional elastic-plastic finite element analysis and dynamic cyclic plasticity model of SM490 developed by the authors. Characteristics of hysteretic behavior of circular steel column using SM490, load carrying capacity and energy dissipation ratio, were clarified by analysis results.

Prediction of ultimate moment anchorage capacity of concrete filled steel box footing

  • Bashir, Muhammad Aun;Furuuchi, Hitoshi;Ueda, Tamon;Bashir, M. Nauman
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.645-658
    • /
    • 2013
  • The objective of the study is to predict the moment anchorage capacity of the concrete filled steel box (CFSB) as footing by using the 3D finite element program CAMUI developed by authors' laboratory. The steel box is filled with concrete and concrete filled steel tube (CFT) column is inserted in the box. Numerical simulation of the experimental specimens was carried out after introducing the new constitutive model for post peak behavior of concrete in compression under confinement. The experimental program was conducted to verify the reliability of the simulation results by the FE program. The simulated peak loads agree reasonably with the experimental ones and was controlled by concrete crushing near the column. After confirming the reliability of the FEM simulation, effects of different parameters on the moment anchorage capacity of concrete filled steel box footing were clarified by conducting numerically parametric study.

Strength Evaluation of Rectangular CFT Stub Columns varing with Concrete Strength and Width-to-Thickness Ratio of Steel Tubes (콘크리트 강도 및 강관 폭두께비에 따른 각형 CFT 단주의 내력평가)

  • Shim, Jong-Seok;Han, Duck-Jeon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.2
    • /
    • pp.31-39
    • /
    • 2011
  • Concrete-filled steel tube(CFT) columns have become popular for building construction due to not only composite effect of steel tube and infilled concrete, but also more economical. The purpose of this paper is to propose the applicable boundary formula of width-to-thickness ratio for rectangular steel tube as using CFT column. A parametric study was performed taking width-to-thickness ratio of rectangular steel tube and compressive strength of concrete as the main parameter. The strength of concrete are selected to 30, 60, 90MPa. The non-linear analysis was adopted in order to take into account the effect of concrete strength. Finally, from the test and analysis results, the effect of increasing strength according to concrete strength and width-to-thickness of steel tube and plastic behavior of specimens were verified distinctly.

Comparison of steels via SMAW and MIG welding methods under industrial loads

  • Soy, Ugur
    • Steel and Composite Structures
    • /
    • v.11 no.3
    • /
    • pp.225-232
    • /
    • 2011
  • In this study, the deflection and deformation behaviours of IPN80 steel beam and column were investigated under the different industrial loads. Single-sided welds were applied to IPN80 steel beams using shielded metal arc (SMAW) and metal inert gas welding (MIG) method in the form of T-type. After that, the performance of SMAW and MIG welded joints were identified using beam bending test under 500 and 3000 N loads. SMAW and MIG methods were compared with each other to understand the deflection and deformation behaviours of the welded steel structures. Lower deformation and deflection were obtained in MIG welded steel beams. The results show that, steel beams welded MIG method has higher load capacity than SMAW welded ones. MIG welding method is more reliable than the SMAW method for the combining performance and load capacity.

Predicting drying shrinkage of steel reinforced concrete columns with enclosed section steels

  • Jie Wu;Xiao Wei;Xiaoqun Luo
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.539-550
    • /
    • 2023
  • Owing to the obstruction of section steel on the moisture diffusion in concrete, the existing shrinkage prediction models overestimate the time-dependent deformation of steel reinforced concrete (SRC) columns, particularly for the SRC columns with enclosed section steels. To solve this issue, this study deals with analytical and experimental studies on the drying shrinkage for this type of column. First, an effective method for predicting the drying shrinkage of concrete based on finite element model is introduced and two crucial parameters for simulation of humidity field are determined. Then, the drying shrinkage of SRC columns with enclosed section steels is investigated and two modified parameters, which depend on the ambient relative humidity and the ratio of section steel size to column size, are introduced to the B3 model. Finally, an experiment on the shrinkage deformation of SRC columns with enclosed section steels is conducted. Comparing the predicted results with the experimental ones, it demonstrates that the modified B3 model is quite reasonable.

Tests and numerical analysis on octagonal concrete-filled double skinned steel tubular short columns under axial compression

  • Manigandan R
    • Steel and Composite Structures
    • /
    • v.50 no.5
    • /
    • pp.499-513
    • /
    • 2024
  • This paper describes the experimental and numerical investigations of octagonal Concrete-Filled Double Skinned Steel Tube (CFDST) short columns under the influence of various internal sizes of the circular and square steel tubes, with constant cross-sectional dimensions of the external octagonal steel tube under concentric loading. The non-linear finite element analysis of octagonal CFDST columns was executed using the ABAQUS to forecast and compare the axial compression behavior influenced by the various sizes of internal circular and square steel tubes. The study shows that the axial compressive strength and ductility of octagonal CFDST columns were significantly influenced by various internal dimensions of the circular and square steel tubes with the strengths of constituent materials.