• Title/Summary/Keyword: steel box-girder bridge

Search Result 231, Processing Time 0.042 seconds

Computation and Verification of Approximate Construction cost of Steel Box Girder Bridge by Using Case-Based Reasoning (사례기반추론을 이용한 강박스거더교의 개략공사비 산정 및 검증)

  • Jung, Min-Sun;Kyung, Kab-Soo;Jeon, Eun-Kyoung;Kwon, Soon-Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.557-568
    • /
    • 2011
  • To effectively come up with and secure a national budget, it is very important to estimate the reasonable construction cost of each step in public construction projects. In this study, the approximate construction cost of a steel box girder bridge in the early stages of the project, on which available information is limited, was proposed using case-based reasoning. In addition, construction cost estimation models were used for existing sample design models, and the accuracy of the estimation model for the presented cost was verified. The analysis results showed that the error rate was comparatively stable. Therefore, it is expected that construction cost estimation will be effectively suggested in the country's budget preparation.

Behavior of Steel Box Girder Bridge According to the Placing Sequences of Concrete Slab (I) (강합성 상자형 교량의 바닥판 타설에 따른 거동 연구(I) - 해석모델 및 현장실험 -)

  • Kwak, Hyo Gyoung;Seo, Young Jae;Jung, Chan Mook;Park, Young Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.123-131
    • /
    • 2000
  • In this study, both experimental and analytical study for behavior of the existing composite steel box girder bridges, constructed along with the procedure of continuous placing slab, are conducted to establish the validity of the proposed model. The layer approach is adopted to determine the equilibrium condition in a section to consider the different material properties and concrete cracking across the sectional depth, and the beam element stiffness is constructed on the basis of the assumed displacement field formulation and the 3-points Gaussian Integration. In addition, the effects of creep and shrinkage of concrete for time-dependent behavior of the bridge are taken into consideration. Finally, both analytical and experimental results are compared.

  • PDF

Probabilistic seismic assessment of RC box-girder bridges retrofitted with FRP and steel jacketing

  • Naseri, Ali;Roshan, Alireza Mirzagoltabar;Pahlavan, Hossein;Amiri, Gholamreza Ghodrati
    • Coupled systems mechanics
    • /
    • v.9 no.4
    • /
    • pp.359-379
    • /
    • 2020
  • Due to susceptibility of bridges in the past earthquakes, vulnerability assessment and strengthening of bridges has gained a particular significance. The objective of the present study is to employ an analytical method for the development of fragility curves, as well as to investigate the effect of strengthening on the RC box-girder bridges. Since fragility curves are used for pre-and post-earthquake planning, this paper has attempted to adopt the most reliable modeling assumptions in order to increase the reliability. Furthermore, to acknowledge the interaction of soil, abutment and pile, the effect of different strengthening methods, such as using steel jacketing and FRP layers, the effect of increase in the bridge pier diameter, and the effect of vertical component of earthquake on the vulnerability of bridges in this study, a three-span RC box-girder bridge was modeled in 9 different cases. Nonlinear dynamic analyses were carried out on the studied bridges subjected to 100 ground motion records via OpenSEES platform. Therefore, the fragility curves were plotted and compared in the four damage states. The results revealed that once the interaction of soil and abutment and the vertical component of the earthquake are accounted for in the calculations, the median fragility is reduced, implying that the bridge becomes more vulnerable. It was also confirmed that steel jackets and FRP layers are suitable methods for pier strengthening which reduces the vulnerability of the bridge.

3-Dimensional FE Analysis of Construction Stages of The Cable-stayed Bridge with Steel-box Girder (강박스 사장교의 시공단계를 고려한 3D 상세 유한요소 해석)

  • Lee Tae-Yeol;Kim Young-Hoon;Shin Hyun-Yang;Kim Jae-Kwon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.249-256
    • /
    • 2005
  • Rigorous FE(Finite Element) analyses of the cable-stayed bridge with steel-box girder, the main construction method of which is FCM (Free Cantilever Method), are presented in this paper. The analysis and the checking of design for a derrick crane under several loading conditions are performed using the software MIDAS/Civil and the beam elements are used to model the main structure. Among all the construction stages, special construction stages are chosen and considered to ensure the safety of segments of box girder The stress analysis for lifting of a segment of box girder is performed using the software SAP2000 and the shell elements of which having 6 DOF(Degrees Of Freedom) per nodes are successfully used to model the segment of box girder for the purpose of capturing the detailed behaviors on the folded-plates in the segment. Finally, concluding remarks are given to improve a design of the derrick crane and the segment based on the results from this study.

  • PDF

Behavior of Steel Box Girder Bridge According to the Placing Sequences of Concrete Slab (II) (강합성 상자형 교량의 바닥판 타설에 따른 거동 연구(II) - 해석적 연구 및 균열제어 -)

  • Kwak, Hyo Gyoung;Seo, Young Jae;Jung, Chan Mook;Park, Young Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.133-142
    • /
    • 2000
  • This study deals with behavior of steel box girder bridges according to the concrete slab casting sequences and sectional types. The time dependent behavior of bridges caused by the differential setting of slab concrete resulting from time gap for each part of slab deck in a sequential placing method produces is analyzed. In correlation studies between girder section types and placing sequences, time dependent effects of concrete creep and shrinkage are implemented in the analytical model proposed in the previous study. Finally, field recommendations in terms of concrete slump and relative humidity are suggested to prevent early transverse cracking of concrete slabs.

  • PDF

Study on Dynamic Characteristic and Safety of 45m Steel Box Railway Bridge according to Girder hight and Ballast (강상형 철도교의 도상종류와 형고에 따른 동특성 및 안정성 연구)

  • Yun, Ji-Hong;Choi, Kwon-Young;Kwon, Ku-Sung;An, Ju-Ok;Chung, Won-Seok
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3147-3155
    • /
    • 2011
  • Railway bridges are highly susceptible to resonance due to the equidistant axle load with constant speed of train. Thus, it is inevitable verify dynamic characteristics and quantities against dynamic guidelines. Recently, various new-type bridges are developed and applies to medium span length between 30m and 40m. However, just steel box girder bridge is under review for span length between 45m and 50m without development any new technologies. This study investigate the dynamic properties and safety of steel box railway bridge having span length 45m in alternative girder hight and kind of ballast. Numerical analysis is performed time series analysis by mode superposition using calculated natural vibration frequency and mode after carry out a free vibration analysis and extract modal parameter to higher modes. The results are then compared to various dynamic stability standards toward target bridge's dynamic stability analysis. The result of this study is expected as a reference for design railway bridges.

  • PDF

Study of the Temperature Difference between the Top and Bottom Web of Steel Box Girder without Concrete Slab by using Gauge Measurement (계측에 의한 콘크리트 슬래브가 없는 강박스거더의 상하 온도차 연구)

  • Lee, Seong-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7350-7356
    • /
    • 2014
  • To study the reasonable design thermal loads, a steel box girder bridge specimen, which has no concrete slab, was manufactured with real size dimensions. The temperature data was obtained at the web and diaphragm using thermo gauges that were attached according to height. In the hottest day, the temperature differences between the top and bottom of the bridge model were calculated. The temperatures in the actual bridge were measured and the temperature of the bridge specimen was compared. The temperature gradient models were proposed in both the web and the diaphragm. The proposed models showed a correlation of approximately 95.8% compared to the Euro code. This study can provide basis data for temperature-load design in the nation.

Construction of the longest open toped steel box girder composite bridge in the country (국내 최장 개구제형 합성형교 시공)

  • Oh, Hyun-Chul;Ma, Hyang-Wook;Kim, In-Gyu;Kim, Young-Jin;Jang, Seung-Kyoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.165-166
    • /
    • 2009
  • This paper is to research for construction of the longest open toped steel box girder composite bridge using precast concrete deck in the country. This type bridge can bring down the construction costs by reducing the steel's weight used it's girders. And, it also can reduce working hours for construction over 6months by applying the precast deck system. I will introduce the process of construction the longest this type bridge within the country named Seochon Bridge

  • PDF

Fatigue life prediction of horizontally curved thin walled box girder steel bridges

  • Nallasivam, K.;Talukdar, Sudip;Dutta, Anjan
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.387-410
    • /
    • 2008
  • The fatigue damage accumulation rates of horizontally curved thin walled box-girder bridge have been estimated from vehicle-induced dynamic stress history using rain flow cycle counting method in the time domain approach. The curved box-girder bridge has been numerically modeled using computationally efficient thin walled box-beam finite elements, which take into account the important structural actions like torsional warping, distortion and distortional warping in addition to the conventional displacement and rotational degrees of freedom. Vehicle model includes heave-pitch-roll degrees of freedom with longitudinal and transverse input to the wheels. The bridge deck unevenness, which is taken as inputs to the vehicle wheels, has been assumed to be a realization of homogeneous random process specified by a power spectral density (PSD) function. The linear damage accumulation theory has been applied to calculate fatigue life. The fatigue life estimated by cycle counting method in time domain has been compared with those found by estimating the PSD of response in frequency domain. The frequency domain method uses an analytical expression involving spectral moment characteristics of stress process. The effects of some of the important parameters on fatigue life of the curved box bridge have been studied.

Dynamic analysis of a coupled steel-concrete composite box girder bridge-train system considering shear lag, constrained torsion, distortion and biaxial slip

  • Li Zhu;Ray Kai-Leung Su;Wei Liu;Tian-Nan Han;Chao Chen
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.207-233
    • /
    • 2023
  • Steel-concrete composite box girder bridges are widely used in the construction of highway and railway bridges both domestically and abroad due to their advantages of being light weight and having a large spanning ability and very large torsional rigidity. Composite box girder bridges exhibit the effects of shear lag, restrained torsion, distortion and interface bidirectional slip under various loads during operation. As one of the most commonly used calculation tools in bridge engineering analysis, one-dimensional models offer the advantages of high calculation efficiency and strong stability. Currently, research on the one-dimensional model of composite beams mainly focuses on simulating interface longitudinal slip and the shear lag effect. There are relatively few studies on the one-dimensional model which can consider the effects of restrained torsion, distortion and interface transverse slip. Additionally, there are few studies on vehicle-bridge integrated systems where a one-dimensional model is used as a tool that only considers the calculations of natural frequency, mode and moving load conditions to study the dynamic response of composite beams. Some scholars have established a dynamic analysis model of a coupled composite beam bridge-train system, but where the composite beam is only simulated using a Euler beam or Timoshenko beam. As a result, it is impossible to comprehensively consider multiple complex force effects, such as shear lag, restrained torsion, distortion and interface bidirectional slip of composite beams. In this paper, a 27 DOF vehicle rigid body model is used to simulate train operation. A two-node 26 DOF finite beam element with composed box beams considering the effects of shear lag, restrained torsion, distortion and interface bidirectional slip is proposed. The dynamic analysis model of the coupled composite box girder bridge-train system is constructed based on the wheel-rail contact relationship of vertical close-fitting and lateral linear creeping slip. Furthermore, the accuracy of the dynamic analysis model is verified via the measured dynamic response data of a practical composite box girder bridge. Finally, the dynamic analysis model is applied in order to study the influence of various mechanical effects on the dynamic performance of the vehicle-bridge system.