• Title/Summary/Keyword: steel box

Search Result 613, Processing Time 0.031 seconds

Damage Assessment of Steel Box-girder Bridge using Neural Networks (신경망을 이용한 강박스거더교의 손상평가)

  • Lee, In Won;Oh, Ju Won;Park, Sun Kyu;Kim, Ju Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.1 s.38
    • /
    • pp.79-88
    • /
    • 1999
  • Damages of a steel box girder bridge are detected using neural networks. Damage detection using neural networks has increasing momentum in structural engineering. It is a new effort to overcome the limitations of the conventional analytical approaches and applied to the damage detection of a steel box-girder bridge. Data sets for training neural networks are obtained from the acceleration response of the bridge under moving load. Finite element model is first defined and damages of 5, 10, 15 and 20% are assumed in the model. Not only the trained damages but untrained damages are detected in the assessment stage. The untrained damages can be detected with acceptable errors. Because the number of damaged locations are limited to a few parts, more researches are needed to put this technique into practice.

  • PDF

Confinement evaluation of concrete-filled box-shaped steel columns

  • Susantha, K.A.S.;Ge, Hanbin;Usami, Tsutomu
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.313-328
    • /
    • 2001
  • This paper presents a three-dimensional finite element analysis methodology for a quantitative evaluation of confinement in concrete-filled box-shaped unstiffened steel columns. The confinement effects of concrete in non-circular sections can be assessed in terms of maximum average lateral pressure. A brief review of a previous method adopted for the same purpose is also presented. The previous method is based on a two-dimensional finite element analysis method involving a concrete-steel interaction model. In both the present and previous methods, average lateral pressure on concrete is computed by means of the interaction forces present at the concrete-steel interface. Subsequently, the strength enhancement of confined concrete is empirically related to the maximum average lateral pressure. The results of the former and latter methods are then compared. It is found that the results of both methods are compatible in terms of confined concrete strengths, although the interaction model yields a somewhat overestimated estimation of confinement than those of the present method when relatively high strength concrete is used. Furthermore, the confinement in rectangular-shaped sections is investigated and the reliability of previously adopted simplifications in such cases is discussed.

Dynamic Analysis of Steel Box Girder Bridge installed with Skid Proof Pavement (미끄럼방지포장을 설치한 강상자형 교량의 동적해석)

  • Park, Pyoung Deuk;Chung, Jae Hoon;Yhim, Sung Soon
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.329-337
    • /
    • 2002
  • The skid proof pavement is used for safety driving on curved bridges and high level roads. This study analyzed the effect of skid proof pavement on the bridge using actual spot test and computer analysis. In the actual spot test, the natural frequency and dynamic deflection of steel box girder bridges were measured before and after skid proof pavement. Likewise, in the computer analysis, the dynamic response of the finite element model was evaluated. The model was based on real steel box girder bridge according to the skid proof pavement. The analyzed results provide basic data on the effect of skid proof pavement on road structure.

Computation and Verification of Approximate Construction cost of Steel Box Girder Bridge by Using Case-Based Reasoning (사례기반추론을 이용한 강박스거더교의 개략공사비 산정 및 검증)

  • Jung, Min-Sun;Kyung, Kab-Soo;Jeon, Eun-Kyoung;Kwon, Soon-Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.557-568
    • /
    • 2011
  • To effectively come up with and secure a national budget, it is very important to estimate the reasonable construction cost of each step in public construction projects. In this study, the approximate construction cost of a steel box girder bridge in the early stages of the project, on which available information is limited, was proposed using case-based reasoning. In addition, construction cost estimation models were used for existing sample design models, and the accuracy of the estimation model for the presented cost was verified. The analysis results showed that the error rate was comparatively stable. Therefore, it is expected that construction cost estimation will be effectively suggested in the country's budget preparation.

Behavior of Steel Box Girder Bridge According to the Placing Sequences of Concrete Slab (II) (강합성 상자형 교량의 바닥판 타설에 따른 거동 연구(II) - 해석적 연구 및 균열제어 -)

  • Kwak, Hyo Gyoung;Seo, Young Jae;Jung, Chan Mook;Park, Young Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.133-142
    • /
    • 2000
  • This study deals with behavior of steel box girder bridges according to the concrete slab casting sequences and sectional types. The time dependent behavior of bridges caused by the differential setting of slab concrete resulting from time gap for each part of slab deck in a sequential placing method produces is analyzed. In correlation studies between girder section types and placing sequences, time dependent effects of concrete creep and shrinkage are implemented in the analytical model proposed in the previous study. Finally, field recommendations in terms of concrete slump and relative humidity are suggested to prevent early transverse cracking of concrete slabs.

  • PDF

Behavior of Steel Box Girder Bridge According to the Placing Sequences of Concrete Slab (I) (강합성 상자형 교량의 바닥판 타설에 따른 거동 연구(I) - 해석모델 및 현장실험 -)

  • Kwak, Hyo Gyoung;Seo, Young Jae;Jung, Chan Mook;Park, Young Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.123-131
    • /
    • 2000
  • In this study, both experimental and analytical study for behavior of the existing composite steel box girder bridges, constructed along with the procedure of continuous placing slab, are conducted to establish the validity of the proposed model. The layer approach is adopted to determine the equilibrium condition in a section to consider the different material properties and concrete cracking across the sectional depth, and the beam element stiffness is constructed on the basis of the assumed displacement field formulation and the 3-points Gaussian Integration. In addition, the effects of creep and shrinkage of concrete for time-dependent behavior of the bridge are taken into consideration. Finally, both analytical and experimental results are compared.

  • PDF

Parameters influencing redundancy of twin steel box-girder bridges

  • Kim, Janghwan;Kee, Seong-Hoon;Youn, Heejung;Kim, Dae Young
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.437-450
    • /
    • 2018
  • A bridge comprising of two girders, such as a twin steel box-girder bridge, is classified as fracture critical (i.e., non-redundant). In this study, the various bridge components of the twin steel box-girder bridge are investigated to determine if these could be utilized to improve bridge redundancy. Detailed finite-element (FE) models, capable of simulating prominent failure modes observed in a full-scale bridge fracture test, are utilized to evaluate the contributions of the bridge components on the ultimate behavior and redundancy of the bridge sustaining a fracture on one of its girders. The FE models incorporate material nonlinearities of the steel and concrete members, and are capable of capturing the effects of the stud connection failure and railing contact. Analysis results show that the increased tensile strength of the stud connection and (or) concrete strength are effective in improving bridge redundancy. By modulating these factors, redundancy could be significantly enhanced to the extent that the bridge may be excluded from its fracture critical designation.

Study on Dynamic Characteristics and Safety of Steel Box Railway Bridge (강상형 철도교의 동특성 및 안정성 연구)

  • Choi, Kwon-Young;Yun, Ji-Hong;Kwon, Ku-Sung;Chung, Won-Seok
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1526-1532
    • /
    • 2011
  • Railway bridges are highly susceptible to resonance due to the equidistant axle load with constant speed of train. Thus, it is necessary to verify dynamic characteristics and quantities against dynamic guidelines. Recently, many newly developed bridge systems have been developed for medium span length between 30m and 40m. However, less variety of bridge systems are available for span length between 45m and 50m. Steel box girder is considered as an alternative for span length between 45m and 50m. This study is to investigate the dynamic properties and safety of steel box railway bridge. Modal properties are extracted and moving load analyses are performed using mode superposition method. The results are then compared to various standards.

  • PDF

Behavior Factor of a Steel Box Bridge with Single Column Piers (단주교각 강박스교량의 거동계수)

  • 박준봉;김종수;국승규
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.228-235
    • /
    • 2002
  • As the response spectrum method generally used in the earthquake resistant design is a linear method, the nonlinear behavior of a structure is to be reflected with a specific factor. Such factors are provided in the "Design Criteria for Roadwaybridges"as response modification factors and in the Eurocode 8, Part 2 as behavior factors. In this study a 5-span steel box bridge with single column piers is selected and the behavior factor is determined. The linear time history analyses are carried out with a simple linear model, where the nonlinear behavior of piers leading to the ductile failure mechanism is considered as predetermined characteristic curves.

  • PDF

Experimental Performance Verification of Load Carrying Capacity Algorithm of Bridges using Ambient Vibration (상시진동을 이용한 교량 내하력 추정 알고리즘의 실험적 성능 검증)

  • Lee, Woo-Sang;Park, Ki-Tae;Han, Sung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.83-90
    • /
    • 2010
  • In this study, it is conducted that the performance verification of the ambient load carrying capacity algorithm using long-term measurement systems of bridges. For this purpose, a steel-box type model bridge is fabricated and the public load carrying capacity of a steel-box model bridge is estimated by conducting the numerical analysis and load test. In addition, we compare the public load carrying capacity with the estimated result of a steel-box model bridge using the ambient load carrying capacity algorithm. By the assessment result, it is shown that the estimated ambient load carrying capacity is the difference of approximately 6.0 percentages as compared with the public load carrying capacity.