• Title/Summary/Keyword: steel ball

Search Result 417, Processing Time 0.025 seconds

The Effects of Curvature Change on Penetration Characteristics of CFRP Laminate shell (곡률변화가 CFRP 적층쉘의 관통특성에 미치는 영향)

  • 조영재;이상훈;김영남;양인영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.274-279
    • /
    • 2004
  • Currently, carbon-fiber reinforced plastics(CFRP) are widely used in both space and civil aircraft due to their superior stiffness and strength to weight ratios compared to conventional metallic materials. This paper is to study the effects of curvature and stacking sequence on the penetration characteristics of composite laminated shell. And were performed to investigate the penetration characteristics of composite laminated shells by the oblique impact. They are stacked to [0$_3$/90$_3$]s, [90$_3$/0$_3$]s and [0$_2$/90$_3$/0]s, [90$_2$/0$_3$/90]s their interlaminar number two and fore. They are manufactured to varied curvature radius (R=100, 150, 200mm and $\infty$). When the specimen is subjected to transverse impact by a steel ball, the velocity of the steel ball was measured both before and after impact by determining the time for it to pass two ballistics-screen sensor located a known distance apart. In general, the critical penetration energy interface decrease and slope angle on the impact surface increased. [0$_3$/90$_3$]s and [0$_2$/90$_3$]s specimens higher than [90$_3$/0$_3$]s and [90$_2$/0$_3$/90]s specimens.

  • PDF

Surface Fracture Response of Glass Eabric/Epoxy Lamina-Bonded Glass Plates to Impact with a Small-Diameter Steel Ball (직물형 유리섬유/에폭시 복합재료로 피막된 판유리의 미소강구 충격에 의한 표면파괴거동)

  • 김형구;최낙삼
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.75-82
    • /
    • 2000
  • A small diameter steel-ball impact experiment was performed to study the impact resistance of the surface of glass plates bonded with glass fabric/epoxy lamina. Five kinds of materials were used in this study: soda-lime glass plates, glass/epoxy lamina(one layer)-bonded and unbonded glass plates, glass/epoxy lamina(three layers)-bonded and unbonded glass plates. The range of impact velocity was 40 120m/s. The maximum stress and absorbed fracture energy were measured on the back surface of glass plates. With increasing impact velocity, various types of surface cracks such as ring, cone, radial and lateral cracks took place in the interior near the impacted site of glass plates. The cracks drastically decreased with glass/epoxy lamina coating. The surface fracture behavior could be evaluated using the maximum stress and the absorbed fracture energy.

  • PDF

A Study on the High Speed Characteristics of Plastic Mould Steel using Ball End Mill AlTiN Coated Layers (볼 엔드밀 AlTiN코팅 층수에 따른 플라스틱금형강의 고속가공에 관한 연구)

  • Lee, Seung-Chul;Cho, Gyu-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.81-86
    • /
    • 2010
  • This paper investigated into process characteristics of AlTiN coated layers for machining to the direction of upper and lower in plastic mold material (KP-4) with the cemented carbide ball endmill with the diameter of 8mm coated AlTiN layers (1~4) step by step using machining center. The material used in experiments was KP-4 that was machined by three types of inclined angles; $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ As estimated mechanical properties of AlTiN coated layers, it was shown the most result in the condition of three layered coating that the coating that the coating depth, the hardness of the coated layer and the surface roughness of the coated layer were $13{\mu}m$, Hv 3027.3 and $0.042{\mu}m$, respectively. The cutting component was better at the condition of upper direction than that of lower direction in all experimental conditions and indicated to be less which the bigger angle of the material was increased the effective diameter of the tool.

The Effect of Test Variables on the Accuracy of Equo-Tip Hardness (Equo-Tip 경도값에 미치는 실험변수의 영향)

  • Nahm, S.H.;Jeon, S.B.;Kim, J.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.2
    • /
    • pp.32-36
    • /
    • 1990
  • For the accurate measurements of hardness in a material, it is necessary to have a thorough understanding of the effects of test variables on the accuracy of hardness value. For the rebound hardness test, major test variables are the radius of hammer ball tip, type of backing materials, size and roughness of the specimen. In this study, effects of these variables on Equo-Tip hardness value were investigated. Hardness measurements were carried out using WC balls with various sizes of worn-ot zone. The sample materials chosen for the experiments were commercial standard hardness blocks and SM45C steel bars subjected to either normalization or quench and temper treatments. As backing materials, aluminum, steel and rubber plates were used in all the experiments. Experimental results show that for the accurate measurements of Equo-tip hardness, it is necessary to use the hammer ball with a worn-out zone parameter of less than 0.23, and the recommended minimum thickness and width of the specimen are 25mm and 70mm, respectively. Further for the surface preparation, the specimens need to be polished with an emery paper of No. 400 or finer, and for the backing matrials, it is recommended to use steels or rubbers.

  • PDF

A Study on the Tribological Characteristics of PTFE Composites-filled with Nano CuO Particles Under a Slow Sliding Speed and Low Load Condition (나노 CuO입자로 충진된 PTFE 나노복합소재의 저속 및 하중 조건에서의 트라이볼로지 특성에 관한 연구)

  • Minhaeng Cho;Junghwan Kim
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.111-117
    • /
    • 2023
  • This paper presents an experimental investigation of the tribological characteristics of PTFE composites filled with nano CuO particles under low sliding speed and load. All the specimens were prepared by sintering. Before sintering, the mixture of PTFE powder and CuO particles were mixed by a high-speed mixer using CuO volume fractions of 0.2 vol. % and 5 vol. %. Each mixture was sintered at 350 ℃ for 30 min on the steel disk. We conducted ball-on-disk sliding test an hour using a steel ball against PTFE composites, including pure PTFE. The load and sliding speed used was 2 N and 0.01 m/s, respectively. Adding nano CuO particles increases the friction coefficient because of the abrasiveness of hard nano CuO particles. The highest coefficient of frictions was obtained from 5 vol. % CuO. Conversely, the lowest wear of the composites was obtained from the 5 vol. % CuO nanocomposite. This study reveals that the addition of nano CuO particles can lower the wear of PTFE, despite an increase in the coefficient of friction. However, the coefficient friction is still moderate compared to other engineering polymers. In addition, the amount of CuO nano particles has to be optimized to reduce friction and wear at the same time.

Tribological Properties of Nanoporous Structured Alumina Film (나노기공구조를 가진 알루미나필름의 트라이볼로지 특성)

  • Kim, Hyo-Sang;Kim, Dae-Hyun;Ahn, Hyo-Sok;Hahn, Jun-Hee;Woo, Lee
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.14-20
    • /
    • 2010
  • Tribological properties of nanoporous structured alumina film was investigated. Alumina film (AAO: anodic aluminum oxide) of $60{\mu}m$ thickness having nanopores of 45 nm diameter with 105 nm interpore-diatance was fabricated by mild anodization process. Reciprocating ball-on-flat sliding friction tests using 1 mm diameter steel ball as a counterpart were carried out with wide range of normal load from 1 mN to 1 N in an ambient environment. The morphology of worn surfaces were analyzed using scanning electron microscopy. The friction coefficient was strongly influenced by the applied normal load. Smooth layer patches were formed on the worn surface of both AAO and steel ball at relatively high load (100 mN and 1 N) due to tribochemical reaction and compaction of wear debris. These tribolayers contributed to the lower friction at high loads. Extremely thin layer patches, due to mild plastic deformation of surface layer, were sparsely distributed on the worn surface of AAO at low loads (1 mN and 10 mN) without the evidence of tribochemical reaction. Delaminated wear particles were generated at high loads by fatigue due to repeated loading and sliding.

Quantitative Assessment of Wear Characteristics of Cr-based Coating Reinforced with Diamond (다이아몬드 강화 Cr 기반 소재의 정량적 마모 특성 평가)

  • Huynh, Ngoc-Phat;Vu, Nga Linh;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.38 no.1
    • /
    • pp.15-21
    • /
    • 2022
  • Diamond reinforced Cr-based coating has been proposed as wear-resistant materials. In this study, the friction and wear characteristics of diamond reinforced Cr-based coating are experimentally assessed. The experiments are performed using a pin-on-reciprocating plate tribo-tester under various normal forces with boundary lubrication. The stainless-steel ball is used as a counter material. Prior to the experiments, mechanical properties such as elastic modulus and hardness are determined using nanoscale instrumented indentation. The hardness of the specimen is further determined using a Vickers hardness tester. The specimens before and after the experiments are carefully observed using a confocal microscope to understand the wear characteristics. In addition, the wear volume and wear rate of the specimens are determined based on the confocal microscope data. The results show that the friction coefficients are 0.096-0.100 under 20-40 N normal forces. Furthermore, the wear rates of the diamond reinforced Cr-based coating and the stainless steel ball under 20-40 N normal forces are found to be 12.8 × 10-8 mm3/(Nm)-15.5 × 10-8 mm3/(Nm) and 1.9 × 10-8 mm3/(Nm)-3.9 × 10-8 mm3/(Nm), respectively. However, the effect of the normal force on wear rates is not clearly observed, which may be associated with the flattening of the ball. The results of the study may be useful for the tribological applicability of diamond reinforced Cr-based coating as wear-resistant materials.

Friction Characteristics of DLC and WC/C (DLC와 WC/C의 마찰특성)

  • Kim, Dong-Wook;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.308-313
    • /
    • 2011
  • In this study, friction tests were performed in order to investigate the effect of sliding velocity and normal load on the friction characteristics of DLC (a-C:H) and WC/C (a-C:H:W) using a ball-on-disk type friction tester. DLC and WC/C were deposited on AISI 52100 steel balls. Friction tests against carburized SCM 415 Cr-Mo steel disks were carried out under various sliding velocity (0.1, 0.78, 1.56, 3.13, 6.25, 12.5, 25, 50 and 100 mm/s) and normal load (2.4, 4.8 and 9.6 N) conditions while the relative humidity was 20~40 % R.H. and air temperature was $16{\sim}24^{\circ}C$. As results, kinetic friction coefficients of DLC and WC/C were obtained under each test condition. The results show that the kinetic friction coefficients of DLC and WC/C generally increase with the increase in sliding velocity. And, under the same sliding velocity condition, the kinetic friction coefficients are almost constant regardless of normal load. In addition, the kinetic friction coefficients of DLC are lower than those of WC/C under the same test conditions.

Tribological performance of some organic fluorine-containing compounds as lubricants

  • Liu, Weimin;Ye, Chengfeng;Xue, Qunji
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.349-350
    • /
    • 2002
  • The friction and wear behaviors of fluorine-containing compounds such as perfluoropolyethers (PFPE), phosphazenes (X-1P), ionic liquids as lubricants for steel/seel, steel/ceramic, ceramic/ceramic were investigated using a SRV tester and a one-way reciprocating friction tester both in ball-on-disc configuration. It was found that the three fluorine-containing lubricants could reduce friction coefficient and wear volume effectively. The effectiveness of the three lubricants in reducing wear volume could be ranked as ionic liquids>X-1P>PFPE. Tests also showed that aryloxyphosphazene with polar substituent as a lubricant of steel/steel pair gave low wear, while aryloxyphosphazene with nonpolar group on the phenyl pendant led to high wear. The morphology and the tribo-chemical reaction of the worn surfaces were analyzed with a scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS). XPS analyses illustrated the formation of iron fluoride in steel/steel system with the lubrication of both phosphazenes and ionic liquids.

  • PDF

Friction and Wear at Dry Sliding Low Carbon Steel Surfaces Under Vacuum Conditions (진공분위기 내에서 건조마찰 미끄럼운동을 하는 저탄소강 표면의 마찰마모 특성)

  • 공호성;윤의성;권오관
    • Tribology and Lubricants
    • /
    • v.10 no.3
    • /
    • pp.29-38
    • /
    • 1994
  • The friction and wear of mild steel at dry sliding surfaces under different vacuum conditions have been investigated to understand the wear mechanisms. For the test, a ball-ondisk typed wear-rig has been built and implemented, allowing control of sliding speed, load and vacuum. Results show that, at a high sliding velocity, friction of low carbon steel (SS41) under a high vacuum is much higher than that of ambient condition and wear is much severer. It is due to lack of effective oxidation film formation on which steel surfaces could protect themselves against the severe wear. It has been shown, however, that there is a critical regime with contact conditions (at a low sliding velocity, a low load, and under a medium vacuum) at which effective, protective films of low carbon steel have been built on the surfaces in a friction process with a self-regulating way, resulting in both very low coefficients of friction (about 0.3) and mild wear. In order to investigate the protective films on steel surfaces, the worn surfaces and the wear debris have been experimentally analyzed with SEM, AES/SAM and XRD. A theoretical analysis of frictional heating at sliding surfaces, and an experimental analysis of the influence of oxidation wear under various vacuum conditions are described. The important variables on which self-formations of protective films at dry sliding surfaces depend, and the wear mechanisms are also investigated.