• 제목/요약/키워드: steel arch

검색결과 248건 처리시간 0.032초

아치모델을 이용한 복부보강이 안된 철근 콘크리트 보의 전단강도 산정 (A Prediction of Shear Strength Using Arch Models in Reinforced Concrete Beams without Web Reinforcement)

  • 김대중
    • 콘크리트학회지
    • /
    • 제10권6호
    • /
    • pp.233-240
    • /
    • 1998
  • 구조역학에 기초한 보의 종방향 휨모멘트변화율과 전단력의 관계와 본 연구자가 이전에 발표한 아취모델을 이용하여 복부보강이 안된 철근콘크리트 보의 전단강도 예측식을 제안하였다. 이론적으로 유도된 본 연구의 전단강도식은 주로 실험결과에 기초한 ACI 318 전단강도식과 비슷한 형태이다. 본 연구에서 제안한 식은 콘크리트 압축강도, 주인장철근비 및 전단지간대 유효높이의 비가 주변수이며, 보작용과 아취작용의 조합에 의한 철근콘크리트 보의 전단저항메카니즘이 합리적으로 반영되어 있다. 본 연구에서 제안한 전단강도식은 ACI 318 전단강도식 및 Zsutty의 전단강도식과 함께 기존의 실험결과와 비교되었다.

Damage inspection and performance evaluation of Jilin highway double-curved arch concrete bridge in China

  • Naser, Ali Fadhil;Zonglin, Wang
    • Structural Engineering and Mechanics
    • /
    • 제39권4호
    • /
    • pp.521-539
    • /
    • 2011
  • Jilin highway concrete bridge is located in the center of Jilin City, which is positioned in the middle part in Jilin Province in the east north of China. This bridge crosses the Songhua River and connects the north and the south of Jilin City. The main purpose of damages inspection of the bridge components is to ensure the safety of a bridge and to identify any maintenance, repair, or strengthening which that need to be carried out. The damages that occur in reinforced concrete bridges include different types of cracks, scalling and spalling of concrete, corrosion of steel reinforcement, deformation, excessive deflection, and stain. The main objectives of this study are to inspect the appearance of Jilin highway concrete bridge and describe all the damages in the bridge structural members, and to evaluate the structural performance of the bridge structure under dead and live loads. The tests adopted in this study are: (a) the depth of concrete carbonation test, (b) compressive strength of concrete test, (c) corrosion of steel test, (d) static load test, and (e) dynamic load test. According to the damages inspection of the bridge structure appearance, most components of the bridge are in good conditions with the exception arch waves, spandrel arch, deck pavement of new arch bridge, and corbel of simply supported bridge which suffer from serious damages. Load tests results show that the deflection, strain, and cracks development satisfy the requirements of the standards.

In-Plane Stability of Concrete-Filled Steel Tubular Parabolic Truss Arches

  • Liu, Changyong;Hu, Qing;Wang, Yuyin;Zhang, Sumei
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1306-1317
    • /
    • 2018
  • For determining the in-plane buckling resistance of a concrete-filled steel tubular (CFST) arch, the current technical code GB50923-2013 specifies the use of an equivalent beam-column method which ignores the effect of rise-to-span ratio. This may induce a gap between the calculated result and actual stability capacity. In this study, a FE model is used to predict the buckling behavior of CFST truss arches subjected to uniformly distributed loads. The influence of rise-to-span ratio on the capacity of truss arches is investigated, and it is found that the stability capacity reduces as rise-to-span ratio declines. Besides, the calculations of equivalent slenderness ratio for different truss sections are made to consider the effect of shear deformation. Moreover, based on FE results, a new design equation is proposed to predict the in-plane strength of CFST parabolic truss arches under uniformly distributed loads.

조립식 복합소재 아치구조를 이용한 가교 시스템 개발 (Development of a System of Temporary Arch Bridges by Using Snap-fit GFRP Composite Decks)

  • 조용상;이성우;홍기증
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.276-281
    • /
    • 2008
  • Glass-fiber reinforced polyester(GFRP) composite material is a promising alternative to existing construction materials such as steel, concrete and wood. One of passible applications of GFRP composite material is to build temporary bridges by assembling GFRP composite decks. In this paper, we develop a system of temporary arch bridges that can be built by easy assembling of GFRP composite decks. For this purpose, several types of temporary arch bridges are suggested and verified by FE analysis.

  • PDF

양단고정 변단면 도호아-치의 수치해석에 관한 연구 (Numerical Analysis of Tapered Circular Arch with Fixed Ends)

  • 박문호;이병구
    • 한국농공학회지
    • /
    • 제19권3호
    • /
    • pp.4462-4471
    • /
    • 1977
  • The governing differential equations for the tapered circular arch with fixed ends have been derived, and a numerical procedure for the solution of these equations have been developed. The governing differential equations were solved numerically by an initial value integration procedure and Shooting Methods for boundary value problems. The Rungekutta fourth order integration technique was used. The methods was programmed for a Cyber 73-18 computer System, and all esults were obtained on this computer. A detailed study has been made for a fixed arch with an angle of opening equal to 0.7 radian, and the results are presented in detail in tables and curves. It is hoped that the results presented herein is applied to the deformations of gives point from the tri-axial direction of tapered circular arch with fixed ends, bending moment, and torsional moment, and that at the same time results to be used for archwise structures in steel structure.

  • PDF

Reliability analysis for lateral stability of tongwamen bridge

  • Pan, Sheng-Shan;Lei, Shi;Tan, Yong-Gang;Zhang, Zhe
    • Steel and Composite Structures
    • /
    • 제11권5호
    • /
    • pp.423-434
    • /
    • 2011
  • Tongwamen Bridge is a critical link between Dongmen Island and the land in Shipu town, Zhejiang province, China. It is a 238 m span, half-through, concrete-filled steel tubular (CFST) X-type arch bridge. The width of the deck is only 10 m, yielding a width-to-span ratio of 1/23.8. The plane truss type section rib was adopted, which made of two CFST chords and web member system. The lateral stability is the key issue to this bridge. However, the existing researches on Tongwamen Bridge's lateral stability are all the deterministic structural analysis. In this paper, a new strategy for positioning sampling points of the response surface method (RSM), based on the composite method combining RSM with geometric method for structural reliability analysis, is employed to obtain the reliability index of lateral stability. In addition the correlated parameters were discussed in detail to find the major factors. According to the analysis results, increasing the stiff of lateral braces between the arch ribs and setting the proper inward-incline degree of the arch rib can enhance obviously the reliability of lateral stability. Moreover, the deck action of non-orienting force is less than the two factors above. The calculated results indicate that the arch ribs are safe enough to keep excellent stability, and it provides the foundation that the plane truss rib would be a competitive solution for a long-span, narrow, CFST arch bridge.

고속철도 아치교량의 공진특성 (Resonance Characteristics of a Arch Bridge for High-Speed Railways)

  • 남덕우;최홍길;김경남;정경섭
    • 한국강구조학회 논문집
    • /
    • 제20권4호
    • /
    • pp.455-467
    • /
    • 2008
  • 본 연구에서는 열차하중에 의한 아치교량의 처짐, 변형률이력곡선, 진동가속도와 같은 동적거동특성을 파악하기 위하여 동적주행시험을 실시하였다. 동적주행시험의 계측결과는 실 제원을 바탕으로 형상화 된 구조해석모델의 시간이력 및 고유치해석과의 비교를 통해 구조해석모델의 타당성을 검증하는데 이용되었다. 검증된 구조해석모델의 공진 검토결과, 주파수 일치에 의한 공진의 경우 가진 진동수와 고유진동수비가 ${1{\pm}0.04}$의 공진영향범위에서 벗어나도록 하는 것이 필요하다 판단된다. 또한 속도매개변수에 의한 공진의 경우 2차 모드 진동수는 아치교량의 동적거동에 크게 영향을 미치며 아치리브와 관련된 형고비, 라이즈비, 폭, 두께 등의 형상 매개변수 조절을 통해 실 운행속도대역 이상으로 부임계속도를 변화시킴으로서 아치교량의 동적거동을 안정화시킬 수 있었다.

탄소성 모델에 의한 포물선 아치의 극한 내하력 평가 (The Ultimate Load Capacity of the Parabolic Arches by Elasto-Plastic Model)

  • 조진구;박근수
    • 한국농공학회지
    • /
    • 제44권3호
    • /
    • pp.92-100
    • /
    • 2002
  • The advent or high-strength steel has enabled the arch structures to be relatively light, durable and long-spanned by reducing the cross sectional area. On the other hand, the possibility of collapse may be increased due to the slender members which may cause the stability problems. The limit analysis to estimate the ultimate load is based on the concept of collapse mechanism that forms the plastic zone through the full transverse sections. So, it is not appropriate to apply it directly to the instability analysis of arch structures that are composed with compressive members. The objective of this study is to evaluate the ultimate load carrying capacity of the parabolic arch by using the elasto-plastic finite element model. As the rise to span ratio (h/L) varies from 0.0 to 0.5 with the increment of 0.05, the ultimate load has been calculated fur arch structures subjected to uniformly distributed vertical loads. Also, the disco-elasto-plastic analysis has been carried out to find the duration time until the behavior of arch begins to show the stable state when the estimated ultimate load is applied. It may be noted that the maximum ultimate lead of the parabolic arch occurs at h/L=0.2, and the appropriate ratio can be recommended between 0.2 and 0.3. Moreover, it is shown that the circular arch may be more suitable when the h/L ratio is less than 0.2, however, the parabolic arch can be suggested when the h/L ratio is greater than 0.3. The ultimate load carrying capacity of parabolic arch can be estimated by the well-known formula of kEI/L$^3$where the values of k have been reported in this study. In addition, there is no general tendency to obtain the duration time of arch structures subjected to the ultimate load in order to reach the steady state. Merely, it is observed that the duration time is the shortest when the h/L ratio is 0.1, and the longest when the h/L ratio is 0.2.

고강도 콘크리트를 적용시킨 신형식 거더의 동적해석 및 안정성 평가 (Dynamic Analysis and Safety Estimation of New Type Girder Filled by High-Strength Concrete)

  • 최성우;이학;공정식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.213-216
    • /
    • 2008
  • 강관의 내부에 콘크리트를 충전한 구조인 콘크리트 충전 강관 구조(Concrete Filled Steel Tubular Structure, CFT 구조)는 강재와 콘크리트의 단점을 상호 보완하고 장점을 극대화 할 수 있다는 이점이 있다. 이와 같은 CFT 거더의 장점을 살리면서 CFT 거더보다 더 뛰어난 경제적, 구조적 효율성을 얻기 위해 기존의 CFT 구조에 아치 형식과 프리스트레스를 도입한 신형식 거더인 CFTA(Concrete-Filled and Tied Tubular Arch) 거더에 대한 연구가 현재 진행 중이다. CFTA 거더의 가장 큰 특징은 아치형상과 외부로 노출되어 있는 텐던인데 현재 연구과정에서 지적되고 있는 문제점 중의 하나는 외부로 노출된 텐던의 안전성에 관한 문제이다. 따라서 본 논문에서는 외부로 노출되어 있는 텐던에 대한 안전성 평가를 수행하였다. 또한, collision numerical simulation을 사용하여 동적 충돌에 대한 해석도 수행하였다. 모델의 해석을 위해 유한요소 해석 결과의 신뢰성이 높고, 타 연구에서도 많이 사용되고 있는 ABAQUS 6.5-1을 이용하였다.

  • PDF

Modal testing and finite element model calibration of an arch type steel footbridge

  • Bayraktar, Alemdar;Altunisk, Ahmet Can;Sevim, Baris;Turker, Temel
    • Steel and Composite Structures
    • /
    • 제7권6호
    • /
    • pp.487-502
    • /
    • 2007
  • In recent decades there has been a trend towards improved mechanical characteristics of materials used in footbridge construction. It has enabled engineers to design lighter, slender and more aesthetic structures. As a result of these construction trends, many footbridges have become more susceptible to vibrations when subjected to dynamic loads. In addition to this, some inherit modelling uncertainties related to a lack of information on the as-built structure, such as boundary conditions, material properties, and the effects of non-structural elements make difficult to evaluate modal properties of footbridges, analytically. For these purposes, modal testing of footbridges is used to rectify these problems after construction. This paper describes an arch type steel footbridge, its analytical modelling, modal testing and finite element model calibration. A modern steel footbridge which has arch type structural system and located on the Karadeniz coast road in Trabzon, Turkey is selected as an application. An analytical modal analysis is performed on the developed 3D finite element model of footbridge to provide the analytical frequencies and mode shapes. The field ambient vibration tests on the footbridge deck under natural excitation such as human walking and traffic loads are conducted. The output-only modal parameter identification is carried out by using the peak picking of the average normalized power spectral densities in the frequency domain and stochastic subspace identification in the time domain, and dynamic characteristics such as natural frequencies mode shapes and damping ratios are determined. The finite element model of footbridge is calibrated to minimize the differences between analytically and experimentally estimated modal properties by changing some uncertain modelling parameters such as material properties. At the end of the study, maximum differences in the natural frequencies are reduced from 22% to only %5 and good agreement is found between analytical and experimental dynamic characteristics such as natural frequencies, mode shapes by model calibration.