• Title/Summary/Keyword: steel I-beams

Search Result 198, Processing Time 0.025 seconds

Hot Stamping Simulations and Experiments for CTBA Tubular Beams (CTBA Tubular Beam의 열간 성형해석 및 실험)

  • Suh, C.H.;Kim, W.S.;Sung, J.H.;Park, J.K.;Kim, Y.S.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.13-19
    • /
    • 2015
  • For an accurate analysis of hot stamping, a coupled simulation with different aspects of the process(i.e. mechanical, thermal, and phase transformation) is needed. However, coupled simulations are time consuming and costly. Therefore, the current study proposes a simplified method focused on the forming for the hot stamping simulation of a coupled torsion beam axle (CTBA) tubular beam. In this simplified method, non-isothermal conditions were assumed and only conduction was considered, since it represents the majority of the heat transfer during hot stamping. In addition, temperature and strain rate effects were also included. Moreover, an isothermal simulation was conducted and compared with a non-isothermal simulation. Finally, the simulations were verified by experiments. In conclusion, the proposed method is shown to be effective for the development of tube-type parts, and it effectively predicts the deformation of the tubular beam during hot stamping.

Inelastic distortional buckling of cantilevers

  • Lee, Dong-Sik;Bradford, Mark Andrew
    • Steel and Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • Cantilevers are unique statically determinate structural elements with respect to their mode of overall buckling, in that the tension flange is the critical flange under gravity loading, and is the flange that deflects greatest during overall buckling. While this phenomenon does not complicate the calculation of the lateral buckling load, either theoretically or in structural design codes, it has been shown in previous research that the influence of distortion in the elastic buckling of cantilevers is not the same as that experienced in the elastic buckling of simply supported beams. This paper extends the study of the distortional buckling of cantilevers into the hitherto unconsidered inelastic range of structural response. A finite element method for studying the inelastic bifurcative instability of members whose cross-sections may distort during buckling is described, and the efficacy of the method is demonstrated. It is then used to study the inelastic distortional buckling of hot-rolled I-section cantilevers with two common patterns of residual stresses, and which may be restrained elastically from buckling by other structural elements.

Seismic response of EB-frames with inverted Y-scheme: TPMC versus eurocode provisions

  • Montuori, R.;Nastri, E.;Piluso, V.
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1191-1214
    • /
    • 2015
  • The Theory of Plastic Mechanism Control (TPMC) has been recently extended to the case of Eccentrically Braced Frames (EBFs) with inverted Y-scheme, i.e., EBFs with vertical links. In this paper a further validation of the design procedure, based on TPMC, is provided by means of Incremental Dynamic Analyses (IDA) pointing out the fulfilment of the design goal, i.e., the development of a pattern of yielding consistent with the collapse mechanism of global type where all the links are yielded and all the beams are yielded at their ends while all the columns and the diagonal braces remain in elastic range with the only exception of the base sections of first storey columns. In particular, a study case is designed according to both TPMC and Eurocode 8 provisions and the corresponding seismic performances are investigated by both push-over and IDA analyses. The results show the different performances obtained in terms of pattern of yielding, maximum interstorey drift, link plastic rotation demand and sharing of the seismic base shear between the moment-resisting part and the bracing part of the structural system. The seismic performance improvement obtained by means of TPMC, compared to Eurocode 8 provisions, is pointed out.

Residual behavior of recycled aggregate concrete beam and column after elevated temperatures

  • Chen, Zongping;Zhou, Ji;Liang, Ying;Ye, Peihuan
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.513-528
    • /
    • 2020
  • This paper presents the results of an experimental study on the residual behavior of reinforced recycled aggregate concrete (RRAC) beam-columns after exposure to elevated temperatures. Two parameters were considered in this test: (a) recycled coarse aggregate (RCA) replacement percentages (i.e. 0, 30, 50, 70 and 100%); (b) high temperatures (i.e. 20, 200, 400, 600, and 800℃). A total of 25 RRAC short columns and 32 RRAC beams were conducted and subjected to different high temperatures for 1 h. After cooling down to ambient temperature, the following basic physical and mechanical properties were then tested and discussed: (a) surface change and mass loss ratio; (b) strength of recycled aggregate concrete (RAC) and steel subjected to elevated temperatures; (c) bearing capacity of beam-columns; (d) load-deformation curve. According to the test results, the law of performance degradation of RRAC beam-columns after exposure to high temperatures is analyzed. Finally, introducing the influence coefficient of RCA replacement percentage and high temperatures, respectively, to correct the calculation formulas of bearing capacity of beam-columns in Chinese Standard, and then the residual bearing capacity of RRAC beam-columns subjected elevated temperatures is calculated according to the modified formulas, the calculated results are in good agreement with the experimental results.

Collapse Initiation and Mechanisms for a Generic Multi-storey Steel Frame Subjected to Uniform and Travelling Fires

  • Rackauskaite, Egle;Kotsovinos, Panagiotis;Lange, David;Rein, Guillermo
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.265-283
    • /
    • 2021
  • To ensure that fire induced collapse of a building is prevented it is important to understand the sequence of events that can lead to this event. In this paper, the initiation of collapse mechanisms of generic a multi-storey steel frame subjected to vertical and horizontal travelling fires are analysed computationally by tracking the formation of plastic hinges in the frame and generation of fire induced loads. Both uniform and travelling fires are considered. In total 58 different cases are analysed using finite element software LS-DYNA. For the frame examined with a simple and generic structural arrangement and higher applied fire protection to the columns, the results indicate that collapse mechanisms for singe floor and multiple floor fires can be each split into two main groups. For single floor fires (taking place in the upper floors of the frame (Group S1)), collapse is initiated by the pull-in of external columns when heated beams in end bays go into catenary action. For single floor fires occurring on the lower floors(Group S2), failure is initiated (i.e. ultimate strain of the material is exceeded) after the local beam collapse. Failure in both groups for single floor fires is governed by the generation of high loads due to restrained thermal expansion and the loss of material strength. For multiple floor fires with a low number of fire floors (1 to 3) - Group M1, failure is dominated by the loss of material strength and collapse is mainly initiated by the pull-in of external columns. For the cases with a larger number of fire floors (5 to 10) - Group M2, failure is dominated by thermal expansion and collapse is mainly initiated by swaying of the frame to the side of fire origin. The results show that for the investigated frame initiation of collapse mechanisms are affected by the fire type, the number of fire floors, and the location of the fire floor. The findings of this study could be of use to designers of buildings when developing fire protection strategies for steel framed buildings where the potential for a multifloor fire exists.

Time Dependent Analysis of Reinforced and Prestressed Concrete Beams (철근콘크리트와 프리스트레스트 콘크리트 보의 시간의존적 거동해석)

  • Kwak, Hyo Gyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 1994
  • This paper deals with the time-dependent analysis of reinforced and prestressed concrete beams. Based on the age-adjusted effective modulus method, the structural behavior in accordance with time is analyzed using the force equilibrium and strain compatibility condition within a typical section. Unlike most of presented approaches adopting some assumptions, such as non-cracking of concrete and consideration of steel effect as a transformed concrete area only, more accurate results can be obtained at all loading conditions since all materials are considered together so as to be maintained their given properties and the cracking effect is included at the same time. Several parameter studies are conducted with the objective to identify the significance of various effects on the time-dependent response of concrete members, i.e., stress re-distribution of each material and occurrance of long-term deflection, etc. Moreover, the obtained results can be used at design and/or construction stage for the purpose of more accurate prediction of structural response with time.

  • PDF

Suggesting double-web I-shaped columns for omitting continuity plates in a box-shaped column

  • Saffari, Hamed;Hedayat, Amir A.;Goharrizi, Nasrin Soltani
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.585-603
    • /
    • 2013
  • Generally the required strength and stiffness of an I-shaped beam to the box-shaped column connection is achieved if continuity plates are welded to the column flanges from all sides. However, welding the forth edge of a continuity plate to the column flange may not be easily done and is normally accompanied by remarkable difficulties. This study was aimed to propose an alternative for box columns with continuity plates to diminish such problems. For this purpose a double-web I-shaped column was proposed. In this case the strength and rotational stiffness of the connection was provided by nearing the column webs to each other. Finite element studies on about 120 beam-column connections showed that the optimum proportion of the distance between two column webs and the width of the column flange (parameter ${\beta}$) was a function of the ratio of the beam flange width to the column flange width (parameter ${\alpha}$). Hence, based on the finite element results, an equation was proposed to estimate the optimum value of parameter ${\beta}$ in terms of parameter ${\alpha}$ to achieve the highest connection performance. Results also showed that the strength and ductility of post-Northridge connections of such columns are in average 12.5 % and 54% respectively higher than those of box-shaped columns with ordinary continuity plates. Therefore, a double-web I-shaped column of optimum arrangement might be a proper replacement for a box column with continuity plates when beams are rigidly attached to it.

Flexural behavior and a modified prediction of deflection of concrete beam reinforced with a ribbed GFRP bars

  • Ju, Minkwan;Park, Cheolwoo;Kim, Yongjae
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.631-639
    • /
    • 2017
  • This study experimentally investigated the flexural capacity of a concrete beam reinforced with a newly developed GFRP bar that overcomes the lower modulus of elasticity and bond strength compared to a steel bar. The GFRP bar was fabricated by thermosetting a braided pultrusion process to form the outer fiber ribs. The mechanical properties of the modulus of elasticity and bond strength were enhanced compared with those of commercial GFRP bars. In the four-point bending test results, all specimens failed according to the intended failure mode due to flexural design in compliance with ACI 440.1R-15. The effects of the reinforcement ratio and concrete compressive strength were investigated. Equations from the code were used to predict the deflection, and they overestimated the deflection compared with the experimental results. A modified model using two coefficients was developed to provide much better predictive ability, even when the effective moment of inertia was less than the theoretical $I_{cr}$. The deformability of the test beams satisfied the specified value of 4.0 in compliance with CSA S6-10. A modified effective moment of inertia with two correction factors was proposed and it could provide much better predictability in prediction even at the effective moment of inertia less than that of theoretical cracked moment of inertia.

The practice of blind bolting connections to structural hollow sections: A review

  • Barnett, T.C.;Tizani, W.;Nethercot, D.A.
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.1-16
    • /
    • 2001
  • Due to aesthetic, economic, and structural performance, the use of structural hollow sections as columns in both continuous moment resisting and nominally pinned construction is attractive. Connecting the beams to these sections is somewhat problematic as there is no access to the interior of the section to allow for the tightening of a standard bolt. Therefore, bolts that may be tightened from one side, i.e., blind bolts, have been developed to facilitate the use of site bolting for this arrangement. This paper critically reviews available information concerning blind bolting technology, especially the performance of fasteners in shear, tension, and moment resisting connections. Also provided is an explanation of the way in which the results have been incorporated into design guidance covering the particular case of nominally pinned connections. For moment resisting connections, it is concluded that whilst the principle has been adequately demonstrated, sufficient data are currently not available to permit the provision of authoritative design guidance. In addition, inherent flexibilities in the connections mean that performance equivalent to full strength and rigid is unlikely to be achievable: a semicontinuous approach to frame design will therefore be necessary.

Mesoscale computational simulation of the mechanical response of reinforced concrete members

  • Wang, Licheng;Bao, Jiuwen
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.305-319
    • /
    • 2015
  • On mesoscopic level, concrete can be treated as a three-phase composite material consisting of mortar, aggregates and interfacial transition zone (ITZ) between mortar and aggregate. A lot of research has confirmed that ITZ plays a crucial role in the mechanical fracture process of concrete. The aim of the present study is to propose a numerical method on mesoscale to analyze the failure mechanism of reinforced concrete (RC) structures under mechanical loading, and then it will help precisely predict the damage or the cracking initiation and propagation of concrete. Concrete is meshed by means of the Rigid Body Spring Model (RBSM) concept, while the reinforcing steel bars are modeled as beam-type elements. Two kinds of RC members, i.e. subjected to uniaxial tension and beams under bending, the fracture process of concrete and the distribution of cracks, as well as the load-deflection relationships are investigated and compared with the available test results. It is found that the numerical results are in good agreement with the experimental observations, indicating that the model can successfully simulate the failure process of the RC members.