• 제목/요약/키워드: steel plate

검색결과 2,917건 처리시간 0.024초

Experimental assessment on flexural behavior of demountable steel-UHPC composite slabs with a novel NPR steel plate

  • Jin-Ben Gu;Jun-Yan Wang;Yi Tao;Qing-Xuan Shi
    • Steel and Composite Structures
    • /
    • 제49권4호
    • /
    • pp.381-392
    • /
    • 2023
  • This study experimentally investigates the flexural behavior of steel-UHPC composite slabs composed of an innovative negative Poisson's ratio (NPR) steel plate and Ultra High Performance Concrete (UHPC) slab connected via demountable high-strength bolt shear connectors. Eight demountable composite slab specimens were fabricated and tested under traditional four-point bending method. The effects of loading histories (positive and negative bending moment), types of steel plate (NPR steel plate and Q355 steel plate) and spacings of high-strength bolts (150 mm, 200 mm and 250 mm) on the flexural behavior of demountable composite slab, including failure mode, load-deflection curve, interface relative slip, crack width and sectional strain distribution, were evaluated. The results revealed that under positive bending moment, the failure mode of composite slabs employing NPR steel plate was distinct from that with Q355 steel plate, which exhibited that part of high-strength bolts was cut off, part of pre-embedded padded extension nuts was pulled out, and UHPC collapsed due to instantaneous instability and etc. Besides, under the same spacing of high-strength bolts, NPR steel plate availably delayed and restrained the relative slip between steel plate and UHPC plate, thus significantly enhanced the cooperative deformation capacity, flexural stiffness and load capacity for composite slabs further. While under negative bending moment, NPR steel plate effectively improved the flexural capacity and deformation characteristics of composite slabs, but it has no obvious effect on the initial flexural stiffness of composite slabs. Meanwhile, the excellent crack-width control ability for UHPC endowed composite members with better durability. Furthermore, according to the sectional strain distribution analysis, due to the negative Poisson's ratio effect and high yield strength of NPR steel plate, the tensile strain between NPR steel plate and UHPC layer held strain compatibility during the whole loading process, and the magnitude of upward movement for sectional plastic neutral axis could be ignored with the increase of positive bending moment.

Topology optimization of steel plate shear walls in the moment frames

  • Bagherinejad, Mohammad Hadi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • 제29권6호
    • /
    • pp.771-783
    • /
    • 2018
  • In this paper, topology optimization (TO) is applied to find a new configuration for the perforated steel plate shear wall (PSPSW) based on the maximization of reaction forces as the objective function. An infill steel plate is introduced based on an experimental model for TO. The TO is conducted using the sensitivity analysis, the method of moving asymptotes and SIMP method. TO is done using a nonlinear analysis (geometry and material) considering the buckling. The final area of the optimized plate is equal to 50% of the infill plate. Three plate thicknesses and three length-to-height ratios are defined and their effects are investigated in the TO. It indicates the plate thickness has no significant impact on the optimization results. The nonlinear behavior of optimized plates under cyclic loading is studied and the strength, energy and fracture tendency of them are investigated. Also, four steel plates including infill plate, a plate with a central circle and two types of the multi-circle plate are introduced with equal plate volume for comparing with the results of the optimized plate.

알루미늄 프라이팬에 부착된 스텐리스판의 패턴이 열 변형 및 표면온도에 미치는 영향 (Effects of Stainless Steel Plate-Patterns on the Thermal Distortion and Surface Temperature of Aluminum Frypan)

  • 문성모;윤명식
    • 한국표면공학회지
    • /
    • 제53권5호
    • /
    • pp.227-231
    • /
    • 2020
  • This article investigated the effects of stainless steel plate-patterns bonded to aluminum frypan on the thermal distortion and surface temperature of the frypan during gas or induction heating. Two different stainless steel plate-patterns were employed: type A contains only circular holes and type B has not only circular holes but also vacant spaces of 0.5 mm thick and 40 mm long straight line crossing 60 mm long curved line. The bottom of the frypan was distorted during heating when type A stainless steel plate-bonded frypan while no significant thermal distortion was observed for type B stainless steel plate-bonded frypan during heating. Temperature of the frypan surface showed the same trend during gas heating, irrespective of stainless steel plate-patterns. During induction heating, however, the frypan with type B stainless steel plate-pattern showed lower surface temperature than the frypan with type A stainless steel plate-pattern. It is concluded that Type B stainless steel plate-pattern with circular holes and vacant spaces of lines is very effective for minimizing a thermal distortion and lowering the surface temperature of an aluminum frypan during induction heating.

계측시스템을 이용한 자동 강재 적치 관리 시스템 개발에 관한 연구 (A study on Development of Auto Steel-Plate Pile System Using Measurement System)

  • 유지헌;김호경;임래수;신헌주
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.424-428
    • /
    • 2008
  • On processing of the shipbuilding, Various steel plates are used as the important material in many fields including the shell plate, a structure, etc. Therefore, the proper steel plate management system like a warehousing, pile, delivery is very important. Presently Operators manage the steel plate by using the software program, but they manage many parts manually, so many problems are generated on the steel plate check, management, and operator safety. In order to solve this problem, we developed Auto Steel-Plate Piling System. Also this system automatically manages and traces the steel-plate from warehousing to delivery.

  • PDF

Cyclic tests and numerical study of composite steel plate deep beam

  • Hu, Yi;Jiang, Liqiang;Zheng, Hong
    • Earthquakes and Structures
    • /
    • 제12권1호
    • /
    • pp.23-34
    • /
    • 2017
  • Composite steel plate deep beam (CDB) is proposed as a lateral resisting member, which is constructed by steel plate and reinforced concrete (RC) panel, and it is connected with building frame through high-strength bolts. To investigate the seismic performance of the CDB, tests of two 1/3 scaled specimens with different length-to-height ratio were carried out under cyclic loads. The failure modes, load-carrying capacity, hysteretic behavior, ductility and energy dissipation were obtained and analyzed. In addition, the nonlinear finite element (FE) models of the specimens were established and verified by the test results. Besides, parametric analyses were performed to study the effect of length-to-height ratio, height-to-thickness ratio, material type and arrangement of RC panel. The experimental and numerical results showed that: the CDBs lost their load-carrying capacity because of the large out-of plane deformation and yield of the tension field formed on the steel plate. By increasing the length-to-height ratio of steel plate, the load-carrying capacity, elastic stiffness, ductility and energy dissipation capacity of the specimens were significantly enhanced. The ultimate loading capacity increased with increasing the length-to-height ratio of steel plate and yield strength of steel plate; and such capacity increased with decreasing of height-to-thickness ratio of steel plate and gap. Finally, a unified formula is proposed to calculate their ultimate loading capacity, and fitting formula on such indexes are provided for designation of the CDB.

방진제도시스템 적용에 따른 강철도 무도상 판형교의 거동 분석 (A Behavior Analysis of Railway Steel Plate Girder Bridge in the Applying Resilient Panel Track System)

  • 최정열;엄맥;강덕만;박용걸
    • 한국철도학회논문집
    • /
    • 제9권6호
    • /
    • pp.717-724
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of improvement for railway steel plate girder bridge by resilient panel track system. It analyzed the mechanical behaviors of steel plate girder bridge with applying resilient panel track system on the finite element analysis and laboratory test for static & dynamic characteristics. As a result, the improvement of steel plate girder bridge with resilient panel track systems are obviously effective for the static & dynamic response which is non-ballast steel plate girder bridge. The analytical and experimental study are carried out to investigate resilient panel track system decrease vertical acceleration and deflection on steel plate girder bridge for serviceability. And the resilient panel track system reduced dynamic maximum displacements (about 59%) and stresses (about 82%), the increase of dynamic safety is predicted by adopting resilient panel track system. From the dynamic test results of steel plate girder bridge, it is investigated that vertical acceleration and deflection is very low with applying resilient panel track system. The servicing steel plate girder bridge with resilient panel track system has need of the reasonable improvement measures which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

방진궤도시스템 적용에 따른 강철도 무도상 판형교의 거동 분석 (A Behavior Analysis of Railway Steel Plate Girder Bridge in the applying Resilient Panel Track system)

  • 이시용;엄맥;오수진;박용걸
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.437-446
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of improvement for railway steel plate girder bridge by resilient panel track system. It analyzed the mechanical behaviors of steel plate girder bridge with applying resilient panel track system on the finite element analysis and laboratory test for static & dynamic characteristics. As a result, the improvement of steel plate girder bridge with resilient panel track systems are obviously effective for the static & dynamic response which is non-ballast steel plate girder bridge. The analytical and experimental study are carried out to investigate resilient panel track system decrease vertical acceleration and deflection on steel plate girder bridge for serviceability. And the resilient panel track system reduced dynamic maximum displacements(about 59%) and stresses(about 82%), the increase of dynamic safety is predicted by adopting resilient panel track system. From the dynamic test results of steel plate girder bridge, it is investigated that vertical acceleration and deflection is very low with applying resilient panel track system. The servicing steel plate girder bridge with resilient panel track system has need of the reasonable improvement measures which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

  • PDF

Strength degradation of reinforced concrete piers wrapped with steel plates under local corrosion

  • Gao, Shengbin;Ni, Jie;Zhang, Daxu;Ge, Hanbin
    • Steel and Composite Structures
    • /
    • 제24권6호
    • /
    • pp.753-765
    • /
    • 2017
  • This paper aims to investigate the strength degradation of reinforced concrete piers wrapped with steel plates which corrode at the pier base by employing a three dimensional elasto-plastic finite element formulation. The prediction accuracy of the employed finite element analysis method is firstly verified by comparing the analytical results with test results. Then, a series of parametric studies is carried out to investigate the effects of steel plate's corrosion position along width direction, corrosion depth along plate thickness, corrosion range along width direction, and steel plate-concrete bonding degradation on the strength of the piers. It is observed that the strength degradation of the piers is closely related to steel plate's corrosion position, corrosion depth and corrosion range in the case of local corrosion on the webs. In contrast, when the base of flanges corrodes, the strength degradation of the piers is only related to steel plate's corrosion depth and corrosion range, and the influence of corrosion position on the strength degradation is very gentle. Furthermore, the strength of the piers decreases with the degradation of steel plate-concrete bonding behavior. Finally, the maximum strength of the piers obtained from numerical analysis corresponding to different bonding behavior is compared with theoretical results within an accepted error.

Assessment of the performance of composite steel shear walls with T-shaped stiffeners

  • Zarrintala, Hadi;Maleki, Ahmad;Yaghin, Mohammad Ali Lotfollahi
    • Earthquakes and Structures
    • /
    • 제23권3호
    • /
    • pp.297-313
    • /
    • 2022
  • Composite steel plate shear wall (CSPSW) is a relatively novel structural system proposed to improve the performance of steel plate shear walls by adding one or two layers of concrete walls to the infill plate. In addition, the buckling of the infill steel plate has a significant negative effect on the shear strength and energy dissipation capacity of the overall systems. Accordingly, in this study, using the finite element (FE) method, the performance and behavior of composite steel shear walls using T-shaped stiffeners to prevent buckling of the infill steel plate and increase the capacity of CSPSW systems have been investigated. In this paper, after modeling composite steel plate shear walls with and without steel plates with finite element methods and calibration the models with experimental results, effects of parameters such as several stiffeners, vertical, horizontal, diagonal, and a combination of T-shaped stiffeners located in the composite wall have been investigated on the ultimate capacity, web-plate buckling, von-Mises stress, and failure modes. The results showed that the arrangement of stiffeners has no significant effect on the capacity and performance of the CSPSW so that the use of vertical or horizontal stiffeners did not have a significant effect on the capacity and performance of the CSPSW. On the other hand, the use of diagonal hardeners has potentially affected the performance of CSPSWs, increasing the capacity of steel shear walls by up to 25%.

강재 플레이트 유한요소해석을 이용한 잔교 상부의 풀 박스 부재의 선정 (Design of Pull Box Members on the Landing Pier Using Finite Element Analysis of a Steel Plate)

  • 김성원;홍혜민;한택희;서승남
    • 한국연안방재학회지
    • /
    • 제4권3호
    • /
    • pp.111-118
    • /
    • 2017
  • In this study, pull box members were designed by finite element analysis of a steel plate covering a pull box to secure its safety on the landing pier dedicated to the large research survey ship. It was assumed that the maximum load is due to the 250 tonf class crane used for unloading work when the working environment in the upper part of the landing pier was considered. The safety of the pull box was evaluated by the comparison between the yield strength of the steel plate and the result of stress analysis on the steel plate due to the crane load. It was found that the stress at the plate from the crane load exceeded the yield strength of the steel(205MPa) when the upper part of the pull box was protected by a $1950{\times}1950mm$ steel plate cover. In order to compensate for this, a concrete filled steel tube(CFT) column with a diameter of 150 mm and a steel thickness of 10 mm was reinforced at the center of the plate, and the finite element analysis was carried out. However, the maximum stress at the steel plate was higher than the yield strength of the steel in some load cases so that it was tried to find appropriate thickness of the steel plate and diameter of the CFT columns. Finally, the analysis results showed that the safety of the pull box was secured when the thickness of the steel plate and the diameter of the CFT column were increased to 30mm and 180mm, respectively.