• Title/Summary/Keyword: steel/steel structure

Search Result 4,114, Processing Time 0.034 seconds

Analytical Method on PSC I Girder with Strengthening of External Tendon (외부강선으로 보강되는 PSC I 합성거더의 해석 기법)

  • Park, Jae-Guen;Lee, Byeong-Ju;Kim, Moon-Young;Shin, Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.697-704
    • /
    • 2008
  • This paper presents an analytical prediction of Nonlinear characteristics of prestressed concrete bridges by strengthened of externally tendon considering construction sequence, using unbonded tendon element and beam-column element based on flexibility method. Unbonded tendon model can represent unbounded tendon behavior in concrete of PSC structures and it can deal with the prestressing transfer of posttensioned structures and calculate prestressed concrete structures more efficiently. This tendon model made up the several nodes and segment, therefore a real tendon of same geometry in the prestressed concrete structure can be simulated the one element. The beam-column element was developed with reinforced concrete material nonlinearities which are based on the smeared crack concept. The fiber hysteresis rule of beam-column element is derived from the uniaxial constitutive relations of concrete and reinforcing steel fibers. The formulation of beam-column element is based on flexibility. Beam-column element and unbonded tendon element were be involved in A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), that were used the analysis of RC and PSC structures. The proposed numerical method for prestressed concrete structures by strengthened of externally tendon is verified by comparison with reliable experimental results.

Increasing Surveyed Area using Tilted Multi Beam Echo Sounder (멀티빔 음향측심기의 기울임 시스템을 이용한 계측영역 확대)

  • Park, Yosup;Hong, Jun-Pyo;Kong, Seong-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5D
    • /
    • pp.739-747
    • /
    • 2011
  • The paper presents implementation & evaluation of survey method with tilted transducer of Multi Beam Echo Sounder (MBES) to increase horizontal & vertical coverage over obstructed port environments with limited physical properties of MBES. Proposed method ($25^{\circ}$ titled transducer) have some discrepancy of bathymetric profiles between normal and tilting method, but we proved average difference is less than IHO Special Order requirements with survey data at port of Dong Ho Port, Masan, Korea. For horizontal mapping coverage of total survey area ($114,961m^2$), normal method covered 53%, $60,895m^2$ of total area but tilting method covered 75%, $5.933m^2$. It is 22% efficient than normal method with similar environments. For vertical mapping coverage of total vertical structure face ($7,421m^2$), normal method covered 14%, $1,046m^2$, proposed methods covered 60%, $4,450m^2$. And we adapt longitudal steel bar to validate MBES results, and provide calibration method with titled transducer of MBES.

Properties analysis of environment friendly calcareous deposit films electrodeposited at various temperature conditions in natural seawater (천연해수 중 온도 변화에 따라 전착한 환경친화적인 석회질 피막의 특성 분석)

  • Lee, Chan-Sik;Kang, Jun;Lee, Myeong-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.779-785
    • /
    • 2015
  • Cathodic protection is recognized as the most cost-effective and technically appropriate corrosion prevention method for the submerged zone of offshore structures, ships, and deep-sea facilities. When cathodic protection is applied, the cathodic currents cause dissolved oxygen reduction, generating hydroxyl ions near the polarized surface that increase the interfacial pH and result in enhanced carbonate ion concentration and precipitation of an inorganic layer whose principal component is calcium carbonate. Depending on the potential, magnesium hydroxide can also precipitate. This mixed deposit is generally called "calcareous deposit." This layer functions as a barrier against the corrosive environment, leading to a decrease in current demand. Hence, the importance of calcareous deposits for the effective, efficient operation of marine cathodic protection systems is recognized by engineers and scientists concerned with cathodic protection in submerged marine environments. Calcareous deposit formation on a marine structure depends on the potential, current, pH, temperature, pressure, sea-water chemistry, flow, and time; deposit quality is significantly influenced by these factors. This study determines how calcareous deposits form in sea water, and assesses the interrelationship of formation conditions (such as the sea water temperature and surface condition of steel), deposited structure, and properties and the effectiveness of the cathodic protection.

Visualization of Structural Shape Information based on Octree using Terrestrial Laser Scanning (3D레이저스캐닝을 이용한 옥트리기반 구조물 형상정보 가시화)

  • Cha, Gichun;Lee, Donghwan;Park, Seunghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.8-16
    • /
    • 2016
  • This study presents the visualization of shape information based on Octree using 3D laser scanning. The process of visualization was established to construct the Octree structure from the 3D scan data. The scan data was converted to a 2D surface through the mesh technique and the surface was then converted to a 3D object through the Raster/Vector transformation. The 3D object was transmitted to the Octree Root Node and The shape information was constructed by the recursive partitioning of the Octree Root Node. The test-bed was selected as the steel bridge structure in Sungkyunkwan University. The shape information based on Octree was condensed into 89.3%. In addition, the Octree compressibility was confirmed to compare the shape information of the office building, a computer science campus in Germany and a New College in USA. The basis is created by the visualization of shape information for double-deck tunnel and it will be expected to improve the efficiency of structural health monitoring and maintenance.

The Remained Basis and the Locational Characteristics of Manufacturing in Chonnam Region (전남지역 제조업의 존립기반과 입지특성)

  • Kim, Jae-Chul
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.2
    • /
    • pp.19-36
    • /
    • 1996
  • This study is to examine the remained basis and the locational characteristics of manufacturing in Chonnam region. First, the locational characteristics of manufacturing in the peripheral region examined through theoretical discussions about manufacturing location. And the locational characteristics of the small and medium firms and large firms be studied as to understand the precedent characteristics of Chonnam region. Chonnam region have the precedent characteristics that the regional capital is not accumulated as Japen exploit agricultural products at a colonial period. And SOC, industry and technology are not developed as geographically Chonnam lesion turn aside the economics axis of Korea-Japen-America within a period of industrialization. Manufacturing firms have beer make up the traditional indigenous firms which base on local market, agriculture and marine products in Chonnam lesion. The characteristics of these firms mainly are food & drink, nonmetal industry that is composed of the small and medium sized firms. The industrial structure is changing to machinery, chemistry, electronics industry from food & drink, nonmetal industry. But these industry is making the simple products. In Chonnam region, these change of industrial structure was expanding to the inland or coast region from the neighhoring region of Kwangju metropolitan. The blanch factories of large enterprises that located in Chonnam region are not connected with small and medium sized firms. The small and medium sized firms are not developed. Because these large enterprises are the iron and steel industry or chemistry industry. So the large-manufacturing firms have characteristics of the capital intensive industry, and make up the monopolistic industrial space of fordist blanch factories.

  • PDF

Study on Flexural Strength of Wide Composite Beam for Long Span and Saving Story height (장스팬 및 층고저감형 와이드 복합보의 휨성능에 관한 연구)

  • Choi, Yun-Cheul;Park, Keum-Sung;Lee, Sang-Sup;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.44-51
    • /
    • 2017
  • Recently, the parking in downtown area has caused severe problem due to the dramatic increase of possessing automobile in the country. A parking structure has been on the spotlight to solve the parking problem in downtown area. However, the overall height of parking structure is stipulated less than 8 m. Therefore, in this research, 'wide composite beam', which is possible for reducing story height and having long span, is developed and the flexural capacity of the wide composite beam is evaluated. Based on the result of the flexural test, the flexural strength of wide composite beam increased by 20% as the thickness of steel beam increased by 3 mm ($6mm{\rightarrow}9mm$) The shapes of rebar (whether it is triangle or rectangular shape) in the wide composite beam did not affect its flexural strength. The flexural strength of wide composite beam without rebar decreased by 10% compared to that of wide composite beam with rebar. In addition, the neutral axis moved upward as a load increased, but the neutral axis moved downward, when the load exceeded a certain level of load.

Crack and Time Effect on Chloride Diffusion Coefficient in Nuclear Power Plant Concrete with 1 Year Curing Period (1년 양생된 고강도 원전 콘크리트의 염화물 확산에 대한 균열 및 시간효과)

  • Chun, Ju-Hyun;Ryu, Hwa-Sung;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.83-90
    • /
    • 2017
  • Concrete structure for nuclear power plant is mass concrete structure with large wall depth and easily permits cracking in early age due to hydration heat and drying shrinkage. It always needs cooling water so that usually located near to sea shore. The crack on concrete surface permits rapid chloride intrusion and also causes more rapid corrosion in the steel. In the study, the effect of age and crack width on chloride diffusion is evaluated for the concrete for nuclear power plant with 6000 psi strength. For the work, various crack widths with 0.0~1.4 mm are induced and accelerated diffusion test is performed for concrete with 56 days, 180days, and 365 days. With increasing crack width over 1.0mm, diffusion coefficient is enlarged to 2.7~3.1 times and significant reduction of diffusion is evaluated due to age effect. Furthermore, apparent diffusion coefficient and surface chloride content are evaluated for the concrete with various crack width exposed to atmospheric zone with salt spraying at the age of 180 days. The results are also analyzed with those from accelerated diffusion test.

A Production Planning System for Assembly Process of Offshore Structure Modules (해양구조물의 모듈조립공정을 위한 생산계획법)

  • Jeong-Je Kim;So-Heum Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.173-190
    • /
    • 1992
  • Considerable number of offshore platforms have been built in Korean shipyards ever since 1976. Unlike for the cases of building ships, however, negligible efforts have been made to establish planning methodology for building onshore platforms. Severe congestion has been shown in the processes of assemblying modules of platforms. The module which is the upper part of a platform is a steel structure accommodating various types of outfittings and machinaries. The production planned without proper consideration on allocating work loads by trade used to show severe interferences among trades of workers and resulted in delayed completion. In this paper, a method of planning module assembly in consideration of leveling work loads by trade is discussed. A system of planning has been formulated and tested on a exampled case of producing a mix of 72 modules. The test showed a possibility of saving 31% of manpower and trimming 11% of through put time.

  • PDF

Design of Lateral Load Resisting System using Nonlinear Static Analysis (비선형 정적해석을 통한 횡저항 시스템의 보유성능 평가 및 설계방안 연구)

  • Song, Jin-Gyu;Kim, Geon-Woo;Jung, Sung-Jin;Song, Young-Hoon;Lee, Seung-Chang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.9-16
    • /
    • 2006
  • The design practice of the lateral resisting system has been traditionally dependent on the experience and know-how of a structural engineer. And the method to reflect the evaluation results of building's capacity on design process doesn't exist. The proposal of a rational design of the lateral load resisting system is based on the available full capacity $(R_{ac})$ of a building and the minimum required capacity $(R_{code})$ suggested in the code. This study suggests thai nonlinear static analysis, which is the estimation of the lateral capacity with the pushover analysis, be included in the existing design procedure of the structure. After finishing the basic structural design, the lateral resisting capacity ol a building is estimated. At the phase of nonlinear static analysis, pushover analysis is peformed to define the fully yielded baseshear $(V_Y)$. When the design wind baseshear $(V_{wind})$ is bigger than the design seismic baseshear $(V_D)$, the value is checked to determine whether or not it is smaller than the $V_Y$. After confirming that it is smaller, the $R_{ac}$ of the structure is computed. If the $V_D$ is bigger at first, only the $R_{ac}$ is computed. When the value of the estimation shows remarkable differences with the $R_{code}$, repetition of the design modification is needed for those approximate to the $R_{code}$. Application of the proposed design procedure to 2-D steel braced RC buildings has proven to be efficient.

Development of Underwater Adhesive, Epoxy, and FRP Composite for Repair and Strengthening of Underwater Structure (수중 구조물의 보수·보강을 위한 수중 접착제, 에폭시와 섬유복합재의 개발)

  • Kim, Sung-Bae;Yi, Na-Hyun;Nam, Jin-Won;Byun, Keun-Joo;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.149-158
    • /
    • 2010
  • Recently, numerous construction techniques for repairing and strengthening methods for above ground or air exposed concrete structure have been developed. However repairing and strengthening methods for underwater structural members under continuous loading, such as piers and steel piles need the further development. Therefore, this study develops an aqua epoxy, which can be used for repairing and strengthening of structural members located underwater. Moreover, using the epoxy material and strengthening fibers, a fiber reinforced composite sheet called Aqua Advanced FRP (AAF) for underwater usage is developed. To verify and to obtain properties of the material and the performance of AAF, several tests such as pull-off strength test, bond shear strength test, and chemical resistance test, were carried out. The results showed that the developed aqua epoxy does not easily dissolve in wet conditions and does not create any residual particle during hardening. In spite of underwater conditions, it showed the superior workability, because of the high viscosity over 30,000 cps and adhesion capacity over 2 MPa, which are nearly equivalent to those used in dry conditions. In case of the chemical resistance test, the developed aqua epoxy and composite showed the weight change of about 0.5~1.0%, which verifies the superior chemical resistance.