• 제목/요약/키워드: steam-power

검색결과 1,320건 처리시간 0.028초

국내 전력 발전 및 산업 부문에서 탄소 포집 및 저장(CCS) 기술을 이용한 이산화탄소 배출 저감 (Reduction of Carbon-Dioxide Emission Applying Carbon Capture and Storage(CCS) Technology to Power Generation and Industry Sectors in Korea)

  • 위정호;김정인;송인승;송보윤;최경식
    • 대한환경공학회지
    • /
    • 제30권9호
    • /
    • pp.961-972
    • /
    • 2008
  • 2004년 기준, 온실가스(GHG; Greenhouse Gas) 총 배출량 약 5억9,060만톤(t)$CO_2$로 배출량 세계 10위권인 우리나라는 국제 환경의 변화를 볼 때 향후 반드시 GHG를 감축해야한다. 2004년 국내 에너지 부문 중, 전력 발전 및 산업 부분에서 배출된 이산화탄소(CO$_2$)량은 총 2억9,685만t으로 우리나라 GHG 전체 발생량의 53.3%를 차지하여 이 두 분야에서 CO$_2$ 배출을 감축시키는 것이 가장 시급하고 중요한 문제이다. 또한 이 두 분야는 산업의 특성상 CCS(Carbon Capture and Storage) 기술을 적용하여 효율적으로 CO$_2$를 저감할 수 있는 가장 잠재력이 높은 분야이다. 두 분야에서 효율적으로 적용될 수 있는 CCS 기술로 단기적으로는 amine을 이용한 화합흡수법이, 중, 장기적으로는 ATR(Autothermal reforming), 또는 MSR-H2(Methane steam reformer with hydrogen separation membrane reactor)가 장착된 연소 전 기술과, SOFC+GT(Solid oxide fuel cell-Gas turbine) 같은 순산소 연소 기술이 가장 유리 할 것으로 예상된다. 이와 같은 최신 연소 전 및 순산소 연소 기술을 이용하면 향후 CO$_2$ 포집 비용을 $US 8.5-43.5/tCO$_2$로 줄일 수 있으며 이를 이용하여 전력 발전 및 산업 부분에서 발생하는 CO$_2$의 10%만을 감축하더라도 약 3,000만t의 CO$_2$를 저감할 수 있겠다.

고분자 전해질 연료전지용 플라즈마 개질 시스템에서 수소 생산 및 CO 산화반응에 관한 연구 (Study on Hydrogen Production and CO Oxidation Reaction using Plasma Reforming System with PEMFC)

  • 홍석주;임문섭;전영남
    • Korean Chemical Engineering Research
    • /
    • 제45권6호
    • /
    • pp.656-662
    • /
    • 2007
  • 고분자 전해질 연료전지 운전에 필요한 수소 공급 장치로서 플라즈마 개질 방법을 이용한 개질기와 일산화탄소 산화반응을 위한 전이 반응기를 설계 및 제작하였다. GlidArc 방전을 이용한 저온플라즈마 개질기는 Ni 촉매를 동시에 사용하여 $CH_4$ 개질함으로서 $H_2$ 선택도를 증대하였다. 개질기의 변수별 연구로서 촉매 온도, 가스 조성비, 전체 가스유량, 전압변화 그리고 개질 특성 및 최적 수소 생산조건을 연구하였으며, 전이반응기의 변수별 연구로서 선택적 산화반응기(PrOx)에 주입되는 공기량, 전이 반응기에 주입되는 수증기량 그리고 온도에 대하여 연구하였다. 플라즈마 개질기에서 최대 수소 생산 조건은 $O_2/C$ 비가 0.64, 가스유량은 14.2 l/min, 촉매 반응기 온도 $672^{\circ}C$ 그리고 유입전력이 1.1 kJ/L일 때 41.1%로 최대 수소 농도를 나타냈다. 그리고 이때의 $CH_4$ 전환율, $H_2$ 수율 그리고 개질기 에너지 밀도는 각각 88.7%, 54%, 35.2%를 나타냈다. 전이 반응기에서 모사된 개질 가스로부터 최대 CO 전환율을 보이는 조건은 2단으로 구성된 PrOx에 주입되는 $O_2/C$ 비가 0.3, HTS에서 주입되는 수증기 주입량 비가 2.8 그리고 HTS, LTS, PrOx I, PrOx II 반응기 온도가 475, 314, 260, $235^{\circ}C$ 일때 가장 높은 CO 전환율을 나타냈다. 플라즈마를 이용한 반응기는 예열 시간은 30분이 소요되었으며, 전이 반응기에서 나오는 최종 개질 가스의 조성은 $H_2$ 38%, CO<10 ppm, $N_2$ 36%, $CO_2$ 21% 그리고 $CH_4$ 4%로 나타냈다.

300MW급 IGCC Power Plant용 $CO_2$ 제거공정 분석 및 모델링 ($CO_2$ Removal Process Analysis and Modeling for 300MW IGCC Power Plant)

  • 전진희;유정석;백민수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.130.2-130.2
    • /
    • 2010
  • 2020년까지 대형 CCS (Carbon Capture and Storage) Demo Plant 시장 (100MW 이상) 이 형성될 전망이다. 발전 부문에서 대규모 CCS 실증 프로젝트는 총 44개이며 연소전(41%), 연소후(28%), 순산소(3%) 프로젝트가 계획되어 있다. 순산소 연소 기술은 실증진입단계, 연소후(USC) 기술은 상용화 추진단계, 연소전 (IGCC) 기술은 실증완료 이후 상용화 진입 단계이다. IGCC 발전의 석탄가스화 기술은 타 산업분야에 서 상용화 되어있어 기술신뢰성이 높다. IGCC 단위설비 기술 개발을 통한 성능개선 및 비용절감에 대한 잠재력을 가지고 있기 때문에 미래의 석탄발전기술로 고려되고 있다. IGCC 기술은 가장 상용화에 앞서있지만 아직까지 IGCC+CCS 대형 설비가 운전된 사례가 전 세계적으로 없으며 미국 EPRI 등에서 Feasibility Study 단계이다. 현재 국책과제로 수행중인 300MW급 태안 IGCC 플랜트를 대상으로 향후 CCS 설비를 적용했을 경우에 대해 기술 타당성 검증을 목적으로 IGCC+CCS 모델링을 수행하였다. 모델링은 스크러버 후단의 합성 가스를 대상으로 하였다. Water Gas Shift Reaction (WGSR) 공정 및 Selexol 공정을 구성하여 최종 단에서 수소 연료를 생산할 수 있도록 하였다. WGSR 공정은 Co/Mo 촉매반응기로 구성되었다. WGSR 모델링을 통하여 주입되는 스팀량 (1~2 mol-steam/mol-CO) 및 온도 변화 ($220-550^{\circ}C$)에 따른 CO가스의 전환율을 분석하여 경제적인 설계조건을 선정하였다. Selexol 공정은 $H_2S$ Absorber, $H_2S$ Stripper, $CO_2$ Absorber, $CO_2$ Flash Drum으로 구성된다. Selexol 공정의 $CO_2$$H_2S$ 선택도를 분석 하였으며 단위 설비별 설계 조건을 예측하였다. 모델링 결과 59kg/s의 합성가스($137^{\circ}C$, 41bar, 가스 조성은 $CO_2$ 1.2%, CO 57.2%, $H_2$ 23.2%, $H_2S$ 0.02%)가 WGSR Process를 통해 98% CO가 $CO_2$ 로 전환되었다. Selexol 공정을 통해 $H_2S$ 제거율은 99.9%, $CO_2$제거율은 96.4%이었고 14.9kg/s의 $H_2$(86.9%) 연료를 얻었다. 모델링 결과는 신뢰성 검증을 통해 IGCC+CCS 전체 플랜트의 성능예측과 Feasibility Study를 위한 자료로 활용될 예정이다.

  • PDF

바이오가스 이용 기술지침 마련을 위한 연구(III) - 기술지침(안) 중심으로 (A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Power generation and Stream - Design and Operation Guideline)

  • 문희성;배지수;박호연;전태완;이영기;이동진
    • 유기물자원화
    • /
    • 제26권2호
    • /
    • pp.95-103
    • /
    • 2018
  • 바이오가스 이용 최적화를 위해 탈황 및 제습 전처리시설 가이드라인으로 $H_2S$ 농도는 철염으로 처리가능한 150 ppm으로 설정하고, 제습은 발전기 운전 적정수분 값이며 EU회원국에서 바이오가스 활용 시 적용하는 상대습도 60 %로 설정하였다. 국내 바이오가스 평균 온도인 $31^{\circ}C$에서 상대습도 60 %으로 적용한다면 노점온도 $22^{\circ}C$, 절대습도 $20.57g/m^3$으로 나타낼 수 있으며, 전처리 설비가 적절히 가동된다면 가이드라인에 만족하여 바이오가스의 이용이 최적화 될 것으로 사료된다. 바이오가스 이용 최적화를 위해 발전기 설비 가이드라인을 설정하고자 하였다. 바이오가스 적정 이용량으로는 전체 가스 발생량의 90 % 이상을 이용해야하며, 발전기 시설의 용량은 여유율을 10~30 %로 설정해야 한다. 발전기에 유입가스의 압력을 균등화하기 위해서는 가스 균등조(buffer tank)를 설치하며, 발전실 평균온도는 $45^{\circ}C$이하로 유지한다. 소화조에서 일정한 메탄농도로 가스가 생성되지 않아 효율이 저하되므로 메탄농도에 변화에 따른 공기연료비 제어시스템을 설치가 요구된다. 본 연구에서는 유기성폐자원의 바이오가스 생산 및 이용을 최적화를 위해 현장시설의 정밀모니터링과 시설별 에너지수지를 분석하고, 현장문제 해결방안에 대해서 조사하여 전처리시설 및 발전기 등의 설계 및 운전 가이드라인을 제시하고자 한다.

화력발전용 저압터빈 최종 단 블레이드에 대한 파손 연구 (Study for Fracture in the Last Stage Blade of a Low Pressure Turbine)

  • 이길재;김재훈
    • 대한기계학회논문집A
    • /
    • 제40권4호
    • /
    • pp.423-428
    • /
    • 2016
  • 저압터빈 최종 단 블레이드는 응축 증기 내 농축된 불순물에 의해 조성되는 부식환경 하에서, 고속회전에 따른 높은 응력이 부가되어 응력부식 균열에 의한 파손이 빈번히 발생된다. 이러한 가혹 환경 하에서 블레이드의 안정적 사용을 위해서 내식성과 고 강도 특성 등을 갖춘 12% Cr 마르텐사이트계 스테인레스 강을 널리 적용한다. 본 논문은 마르텐사이트계 스테인레스 강으로 제작된 최종 단 블레이드가 정상운전 중 갑작스럽게 파손되어, 원인진단을 위해 파손 및 건전 블레이드를 대상으로 기계적 물성, 파단면 및 미세 조직 검사를 수행한 결과를 기술한 내용이다. 파손된 블레이드의 기계적 물성 시험결과 재질 사양서 기준에 비해 충격치는 낮고 경도는 높은 전형적인 재질 취성화 특성이 확인되었다. 또한, 파단면 검사결과 가지(branch)형태의 균열이 입계를 따라 진전하였고, 표면에서 Cl, S 등의 부식성분이 검출되었다. 이상의 결과들을 토대로 블레이드의 파손원인은 응력부식 균열임을 알 수 있었다.

원자력 추진 잠수함의 특성과 농축우라늄 사용 (The characteristics of nuclear powered submarine and the use of enriched uranium)

  • 장준섭
    • Strategy21
    • /
    • 통권41호
    • /
    • pp.261-293
    • /
    • 2017
  • Nuclear power is a way of attaining an enormous amount of energy with relatively small amount of resources and after it has been introduced to the submarine since 1954, there are approximately 150 of nuclear powered submarine currently on a mission around the world. This is due to the maneuverability, mountability and covertness of nuclear submarines. However, there are other tasks, not only the high level of nuclear technology that are needed to be dealt with in order to construct nuclear powered submarine. The biggest task of all is to secure the enriched uranium. Accordingly, this research is about the way of enriching and securing the nuclear fuel that are used in the nuclear submarine with the characteristics, merits and demerits of the nuclear submarine. Due to the fact that the pressurized water reactor in South Korea is the reactor that was originally built for the development of nuclear powered submarine, many parts is designed to be suitable for the submarine propulsion. However, in order to apply this to submarine it is needed to consider additional requests such as the position of reactor, accident-coping system, radioactive covering, reactor output adjustment and ship's pitch and roll in order to apply this to submarine. Nuclear submarines have much higher speed based on the powerful propulsion in comparison with diesel-electric submarine and also have bigger loading area. Besides, there is no need to snorkel and they also have advantages in covertness with the multi-noise proof system. The nuclear technology in South Korea has seen the dramatic development since 1962 and in 1998 reached to the level that we have succeeded in the localization of nuclear plant and exported the world-class one-piece small-sized reactor (SMART) to UAE. To operate these reactors, we import the whole quantity of low-enriched uranium and having our own uranium enrich facility is not probable because of the budget and international regulations. With the ROK/US nuclear agreement revised on 2015 November, the enrichment of uranium that are available without special permission has changed up to 20%. According to the assumption that we use the 20% enrichment of Uranium on U.S. virginia class submarine, it is necessary to change the fuel after 11 years and it will cause additional cost of 1 billion dollars. But the replace period by the uranium's enrichment rate is not fixed so that it is possible to change according to the design of reactor. Therefore, I would like to make a suggestion on two types of design concepts of nuclear submarine that can be operated for 30 years without nuclear fuel change by using the 20% enriched uranium from ONNp.First of all, it is possible by increasing the size of reactor by 3 times and it results in the 1,000t increase of the weight. And secondly, it is by designing the one piece reactor to insert devices such as steam turbine, condenser into the inside of nuclear core like the Rubis class submarines of France.

피부과용$CO_2$ 레이저의 공극(1.0mm및 1.6mm)차이에 따른 동작출력 파형변화에 관한 특성 연구 (Special quality research about action output waveform change by gap (1.0mm and 1.6mm)difference of skin excessive expense $CO_2$ Laser)

  • 김휘영
    • 한국컴퓨터산업학회논문지
    • /
    • 제8권2호
    • /
    • pp.107-112
    • /
    • 2007
  • 피부과용 레이저 파장은 아주 얇은층의 조직두께에서 물의 흡수가 거의 90%이상 일어나는데 병소의 표피나 조직은 거의 물로 구성되어 흡수로 인해 증발효과를 가질 수가 있다. 표피를 절개, 층별로 증발 시킬 수 있으며 조직의 정확한 절개가 가능하다. 혈관이나 림프시스템에도 봉합수술이 가능하고 수술부위가 건조하고 눈으로 볼수 있고 무출혈 수술이 가능하다. 특히, 펄스에 대한 튜브양단 출력의 안정이 매우 중요함으로, 본 연구에서는 고주파 방식의 전력변환 장치를 사용하여 부피를 줄이고 의료용 레이저의 전류파형을 쉽게 제어할 수 있어 다양한 치료 효과를 낼 수 있다. ZVS(Zero Voltage Switching)나 ZVZCS(Zero Voltage and Zero Current Switching)를 도입하면 스위칭 손실을 줄일 수 있어 더욱 유리하다. 제안된 의료용 레이저의 전력부에는 1차측 도움에 의한 ZVZCS기법을 도입하여 넓은 부하 범위에서 안정된 soft-switching을 할 수가 있고 제어부는 microcontroller를 구성하여 출력전류 파형을 사용자가 임의의 형태를 갖도록 하였다. 설계 및 제작하여 실험한 결과, 기존장비에 비해 20%의 향상된 결과를 가져왔고, 추후 시스템적으로 보완을 하면 우수한 결과가 될 것으로 사려된다.

  • PDF

수소생산 기술동향 (Technical Trends of Hydrogen Production)

  • 이신근;한재윤;김창현;임한권;정호영
    • 청정기술
    • /
    • 제23권2호
    • /
    • pp.121-132
    • /
    • 2017
  • 온실가스 배출과 지구온난화 문제로 인하여 화석연료를 대체할 수 있는 신재생에너지 개발 및 확산의 필요성이 증가하고 있는데, 청정에너지원인 수소가 주목을 받고 있다. 수소는 지구상에서 가장 많이 존재하는 원소이며, 화석연료, 바이오매스 및 물 등 다양한 형태로 존재한다. 수소를 연료로 사용하기 위해서는 경제적인 방법뿐만 아니라 환경에 미치는 영향을 최소화하는 방법으로 생산하는 것이 중요하다. 수소생산방법에는 전통적 방법인 화석연료 개질반응을 통한 생산과 재생가능한 방법인 바이오매스 및 물을 이용한 생산으로 나뉜다. 화석연료를 이용한 수소생산은 습윤개질반응, 자열개질반응, 부분산화반응 및 가스화반응 등 열화학적 방법으로 가능한데, 이를 청정에너지원으로서 사용하기 위해서는 수소생산과 더불어 이산화탄소 포집이 필요하다. 바이오매스를 이용한 수소생산은 그 양이 매우 미미한 수준이며, 특히 생물학적 전환법은 효율증가를 위한 반응기 구성, 수소생산미생물 배양 등 효과적으로 수소를 생산하기 위한 연구가 더욱 진행되어야 한다. 물분해를 통한 수소생산이 가장 청정한 수소생산기술이지만 태양광, 태양열, 풍력 등 재생 가능한 에너지원으로부터 충분한 에너지공급이 가능해야 한다.

지열에너지와 진공 막 증류법을 활용한 해수담수화 연계형 공정의 경제성 분석 (Economic Analysis of Geothermal Energy and VMD Desalination Hybrid Process)

  • 박기호;김진현;김혁수;이관영;양대륙;김경남
    • 청정기술
    • /
    • 제20권1호
    • /
    • pp.13-21
    • /
    • 2014
  • 최근 도서지역 지하수의 염분증가로 인해 지하수가 점차 생활용수로 부적합해 짐에 따라 해수담수화의 필요성이 크게 대두되고 있다. 이러한 해수담수화를 수행하기 위해서는 많은 에너지 비용이 들어가는데, 최근 에너지가격의 상승으로 경제성 확보가 어려운 실정이다. 지열에너지를 활용한 연계형 플랜트가 문제를 해결하는 중요한 방법이 될 수 있다. 지열시스템은 지구 내부의 온도를 이용하는 방법으로서 항상 온도가 일정하며 24시간 활용할 수 있어 이용률이 높다는 장점이 있기 때문이다. 본 연구에서는 지열을 보조열원으로 활용한 진공 막 증류법 해수담수화 플랜트를 설계하고, 지열과 연계하지 않은 일반 진공 막 증류법 해수담수화 플랜트와 경제성 비교분석을 했다. 그 결과 할인율 5%일 경우 지열연계형이 $23,822,409 만큼 더 높은 순현재가치 값을 가지며, 운영기간 5.36년을 분기점으로 두 플랜트의 현금흐름이 역전되어 지열연계형 플랜트가 일반 진공 막 증류법 해수담수화 플랜트보다 더 큰 경제성을 갖는 결과를 얻었다. 또한 민감도 분석에서 주요 변수들간의 결과값 비교를 한 결과, 스팀이용비용의 변동폭이 가장 큰 영향을 미친 점에 비추어 스팀비용이 높은 지역일수록 지열에너지 연계형 플랜트가 경제적이고 효과적인 솔루션인 것으로 증명되었다.

PASTELS project - overall progress of the project on experimental and numerical activities on passive safety systems

  • Michael Montout;Christophe Herer;Joonas Telkka
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.803-811
    • /
    • 2024
  • Nuclear accidents such as Fukushima Daiichi have highlighted the potential of passive safety systems to replace or complement active safety systems as part of the overall prevention and/or mitigation strategies. In addition, passive systems are key features of Small Modular Reactors (SMRs), for which they are becoming almost unavoidable and are part of the basic design of many reactors available in today's nuclear market. Nevertheless, their potential to significantly increase the safety of nuclear power plants still needs to be strengthened, in particular the ability of computer codes to determine their performance and reliability in industrial applications and support the safety demonstration. The PASTELS project (September 2020-February 2024), funded by the European Commission "Euratom H2020" programme, is devoted to the study of passive systems relying on natural circulation. The project focuses on two types, namely the SAfety COndenser (SACO) for the evacuation of the core residual power and the Containment Wall Condenser (CWC) for the reduction of heat and pressure in the containment vessel in case of accident. A specific design for each of these systems is being investigated in the project. Firstly, a straight vertical pool type of SACO has been implemented on the Framatome's PKL loop at Erlangen. It represents a tube bundle type heat exchanger that transfers heat from the secondary circuit to the water pool in which it is immersed by condensing the vapour generated in the steam generator. Secondly, the project relies on the CWC installed on the PASI test loop at LUT University in Finland. This facility reproduces the thermal-hydraulic behaviour of a Passive Containment Cooling System (PCCS) mainly composed of a CWC, a heat exchanger in the containment vessel connected to a water tank at atmospheric pressure outside the vessel which represents the ultimate heat sink. Several activities are carried out within the framework of the project. Different tests are conducted on these integral test facilities to produce new and relevant experimental data allowing to better characterize the physical behaviours and the performances of these systems for various thermo-hydraulic conditions. These test programmes are simulated by different codes acting at different scales, mainly system and CFD codes. New "system/CFD" coupling approaches are also considered to evaluate their potential to benefit both from the accuracy of CFD in regions where local 3D effects are dominant and system codes whose computational speed, robustness and general level of physical validation are particularly appreciated in industrial studies. In parallel, the project includes the study of single and two-phase natural circulation loops through a bibliographical study and the simulations of the PERSEO and HERO-2 experimental facilities. After a synthetic presentation of the project and its objectives, this article provides the reader with findings related to the physical analysis of the test results obtained on the PKL and PASI installations as well an overall evaluation of the capability of the different numerical tools to simulate passive systems.