• Title/Summary/Keyword: steam reforming

검색결과 344건 처리시간 0.139초

천연가스의 수증기 개질에 의한 수소 제조 기술 특허동향 (Patent Trend for Hydrogen Production Technology by Steam Reforming of Natural Gas)

  • 서동주;윤왕래;강경석;김종욱
    • 한국수소및신에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.464-480
    • /
    • 2007
  • There are several methods for the hydrogen production such as steam reforming of natural gas, photochemical method, biological method, electrolysis and thermochemical method, etc. These days it has been widely studied for the hydrogen production method having low hydrogen production cost and high efficiency. In this paper, patents in the hydrogen production by steam reforming of natural gas were gathered and analyzed. The search range was limited in the open patents of USA(US), European Union(EP), Japan(JP), and Korea(KR) from 1996 to 2006. Patents were gathered by using key-words searching and extracted by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.

수증기 개질 반응기 내의 열 및 물질전달 특성에 관한 연구 (Heat and mass transfer characteristics in steam reforming reactor)

  • 이신구;임성광;배중면
    • 신재생에너지
    • /
    • 제2권4호
    • /
    • pp.56-63
    • /
    • 2006
  • In this paper, heat and mass transfer characteristics through experimental and numerical study are extensively investigated in steam reforming reactor under given operating conditions. In order to get simulated data at outlet of the reformer, heterogeneous reactor model is incorporated. As the reaction also takes place in porous media, two medium approach is used to take into account thermally non-equilibrium phenomena between catalyst and bulk gas. From various parametric studies, significance of heat transfer is emphasized in steam reforming reaction.

  • PDF

효율적 수소 생산을 위한 메탄 수증기 개질 반응기에서의 불연속적 가스 유입의 영향 (Effect of discontinuous mixture gas feeding on effective hydrogen production in a steam reformer frommethane)

  • 이신구;박준근;임성광;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.25-28
    • /
    • 2008
  • Steam reforming reaction is a matured technology to get hydrogen from hydrocarbon fuels compared with other reforming reactions such as partial oxidation(POX), autothermal reforming(ATR). It is so endothermic that it needs heat source to activate the reaction. Due to the reaction characteristics, heat transfer limitation phenomena generally occur in the steam reformer. As one of new ideas, the effect of discontinuous gas feeding is investigated based on heat transfer characteristics. The new operating method is usually favorable at high GHSV region(i.e. over $10,000h^{-1}$). In order to numerically simulate the physical issues, numerical approach is adopted based on heterogeneous reaction model, two-equation model in energy equation, and other constitutive models in porous media.

  • PDF

천연가스를 이용한 자열개질기의 운영조건에 대한 수치해석 연구 (Numerical Study on operating conditions of Autothermal Reformer using natural gas)

  • 김진욱;김상우;박달영;전상희;이도형
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.91.1-91.1
    • /
    • 2010
  • The Reforming system is an effective method to generate hydrogen which uses for fuel cell system. The purpose of this study is to present characteristics of an autothermal reformer at various operating conditions and to investigate ideal conditions for reforming efficiency. Dominant chemical reactions are Full Combustion, Steam Reforming reaction, Water-Gas Shift reaction and Direct Steam Reforming reaction. Operating parameters of the autothermal reformer are inlet temperature, Oxygen to Carbon Ratio, Steam to Carbon Ratio and Gas Hourly Space Velocity. Autothermal reformer is filled with catalysis of a packbed-bed type. Using numerical approach, we have investigated on various reaction conditions.

  • PDF

CO$_2/H_2$ 원천분리 SMART 공정의 수소생산특성 (Hydrogen Generation Characteristics of SMART Process with Inherent $CO_2/H_2$ Separation)

  • 류호정
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.55-58
    • /
    • 2007
  • To check the feasibility of SMART (Steam Methane Advanced Reforming Technology)system, an experimental investigation was conducted. A fluidized bed reactor of diameter 0.052 m was operated cyclically up to the $10^{th}$ cycle, alternating between reforming and regeneration conditions. FCR-4 catalyst was used as the reforming catalyst and calcined limestone (domestic, from Danyang) was used as the $CO_2$ absorbent. Hydrogen concentration of 98.2% on a dry basis was reached at $650^{\circ}C$ for the first cycle. This value is much higher than $H_2$ concentration of 73.6% in the reformer of conventional SMR (steam methane reforming) system. However, the hydrogen concentration decreased because the $CO_2$ capture capacity decreased as the number of cycles increased.

  • PDF

통합 수증기 개질 시스템의 작동 조건에 대한 수치적 연구 (Parametric Study of an Integrated Steam Methane Reformer with Top-Fired Combustor)

  • 노정훈;정혜미;김동희;엄석기
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.156.1-156.1
    • /
    • 2011
  • It is of great importance to predict operating parameter characteristics of an integrated fuel processor by the increased life-time and system performance. In this study, computational analysis is performed to gain fundamental insights on transport phenomena and chemical reactions in reformer which consists of preheating, steam reforming, and water gas shift reaction beds. Also, a top-fired burner locates inside of the reforming system. The combustor is providing thermal energy necessary for the steam reforming bed which is a endothermic catalytic reactor. Two-dimensional numerical model of the integrated fuel processing system is introduced for the analysis of heat and mass transport phenomena as well as surface kinetics and catalytic process. A kinetic model was developed and then computational results were compared with the experimental data available in the literature. Subsequently, parameter study using the validated steam methane reforming model was conducted by considering operating parameters, i.e. steam to carbon ratio and temperature.

  • PDF

수증기 개질 반응로에 대한 열유동 해석 (A Numerical Study on the Heat and Fluid Flow in Steam Reforming Reactor)

  • 한정옥;이중성;이영철;홍성호;홍성국;동상근
    • 한국가스학회지
    • /
    • 제17권2호
    • /
    • pp.78-84
    • /
    • 2013
  • 수증기 개질 반응로 설계를 위해 수증기 개질 반응로에 대한 열유동 해석을 수행하였다. 6개의 이중관형 개질기 튜브들과 1개의 버너로 구성된 반응로에 대해 개질반응과 열유동 해석을 연계하여 수치계산을 수행하였다. 버너 형상 변화에 따른 반응로 내에서의 유동구조를 계산하여 버너 형상을 선택하였다. 개질반응 통합해석 결과, 반응로 상하단내에서 온도구배가 크게 나타났으며 개질기 튜브 내의 조성 변화도 반응로 온도분포의 영향을 받는 것으로 나타났다. 또한, 운전조건인 SCR 및 GHSV 변동에 따른 개질 반응특성이 변화함을 확인할 수 있었다.

재순환수증기 연료개질형 SOFC시스템의 효용성 평가 (Availability of SOFC systems equipped with a recycled steam reforming fuel processor)

  • 오진숙;정창식;박상균;김명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권7호
    • /
    • pp.569-573
    • /
    • 2016
  • 온실가스 및 대기오염물질 배출 규제는 고효율 및 친환경에 적합한 새로운 선박용 동력장치의 필요성을 제기하고 있다. 최근 이와 같은 문제들을 근본적으로 해결하기 위한 지속가능한 방법으로서 연료전지를 선박의 동력발생장치로 도입하고자 하는 검토가 진행되고 있다. 본 논문은 중대형 선박 적용으로 메탄 개질용 수증기를 내부에서 재순환시키는 고체산화물형 연료전지시스템의 효용성을 외부수증기 공급 방식과 비교하여 분석한 것이다. 그 결과로 재순환수증기 연료개질방식이 셀 전압은 약간 낮게 유기되나 시스템의 전기적 효율은 다소 높아진다는 것을 알 수 있었다.

Naphtha의 stream reforming에 의한 수소제조방법에 대한 전과정평가 (Life Cycle Assessment for Hydrogen Production Method using Stream Reforming of Naphtha)

  • 박희일;김익;이병권;허탁
    • 한국수소및신에너지학회논문집
    • /
    • 제13권1호
    • /
    • pp.3-12
    • /
    • 2002
  • In this study, it achieved life cycle assessment to estimate environmental performance for naphtha steam reforming that account for the production over 50% of total hydrogen output. Although hydrogen dosen't emit air emissions, especially, $CO_2$, a large of $CO_2$ is emitted in hydrogen production process. In the result of this study, it ascertained the truth that $CO_2$ is emitted at the rate of $6.3kg/kgH_2$ and that result from steam reforming reaction and use of fossil fuel in hydrogen manufacturing process. Above all, 57% of total $CO_2$ emissions is emitted in process of steam reforming of naphtha and so it knew that the principle of steam reforming is key issue in aspect to environment. Also, it compared hydrogen by fuel of fuel cell vehicle with gasoline fuel of general gasoline vehicle to analyze relative environment of hydrogen for fossil fuel during the life cycle. As the result, it might be difficult in improvement of environment because $CO_2$ emissions during the hydrogen manufacturing process is nearly the same with that during the use of gasoline.

천연가스 자열개질기를 위한 작동조건과 개질효율의 상관관계에 대한 수치해석 연구 (Numerical Study on Correlation between Operating Parameters and Reforming Efficiency for a Methane Autothermal Reformer)

  • 박준근;이신구;임성광;배중면
    • 대한기계학회논문집B
    • /
    • 제32권8호
    • /
    • pp.636-644
    • /
    • 2008
  • The objective of this paper is to investigate characteristics of an autothermal reformer at various operating conditions. Numerical method has been used, and simulation model has been developed for the analysis. Pseudo-homogeneous model is incorporated because the reactor is filled with catalysts of a packed-bed type. Dominant chemical reactions are Full Combustion reaction, Steam Reforming(SR) reaction, Water-Gas Shift(WGS) reaction, and Direct Steam Reforming(DSR) reaction. Simulation results are compared with experimental results for code validation. Operating parameters of the autothermal reformer are inlet temperature, Oxygen to Carbon Ratio(OCR), Steam to Carbon Ratio(SCR), and Gas Hourly Space Velocity(GHSV). Temperature at the reactor center, fuel conversion, species at the reformer outlet, and reforming efficiency are shown as simulation results. SR reaction rate is improved by increased inlet temperature. Reforming efficiency and fuel conversion reached the maximum at 0.7 of OCR. SR reaction and WGS reaction are activated as SCR increases. When GHSV is increased, reforming efficiency increases but pressure drop from the increased GHSV may decrease the system efficiency.