• 제목/요약/키워드: steady-state characteristics

검색결과 1,175건 처리시간 0.032초

An Improved Stationary Frame-based Digital Current Control Scheme for a PM Synchronous Motor

  • Kim Kyeong-Hwa;Youn Myung-Joong
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.174-178
    • /
    • 2001
  • An improved stationary frame-based digital current control technique for a permanent magnet (PM) synchronous motor is presented. Generally, the stationary frame current controller is known to provide the advantage of a simple implementation. However, there are some unavoidable limitations such as a steady-state error and a phase delay in the steady-state. On the other hand, in the synchronous frame current regulator, the regulated currents are dc quantities and a zero steady-state error can be obtained through the integral control. However, the need to transform the signals between the stationary and synchronous frames makes the implementation of a synchronous frame regulator complex. Although the PI controller in the stationary frame gives a steady-state error and a phase delay, the control performance can be greatly improved by employing the exact decoupling control inputs for the back EMF, resulting in an ideal steady-state control characteristics irrespective of an operating condition as in the synchronous PI decoupling controller. However, its steady-state response may be degraded due to the inexact cancellation inputs under the parameter variations. To improve the control performance in the stationary frame, the disturbance is estimated using the time delay control. The proposed scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF

An Improved Stationary Frame-based Digital Current Control Scheme for a PM Synchronous Motor

  • Kim, Kyeong-Hwa;Young, Myung-Joong
    • Journal of Power Electronics
    • /
    • 제1권2호
    • /
    • pp.88-98
    • /
    • 2001
  • An improved stationary frame-based digital current control technique for a permanent magnet(PM) synchronous motor is presented. Generally, the stationary frame current controller is known to provide the advantage of a simple implementation. However, there are some unavoidable limitations such as a steady-state error and a phase delay in the steady-state. On the other hand, in the synchronous frame current regulator the regulated currents are dc quantities and a zero steady-state error can be obtained through the integral control. However, the need to transform the signals between the stationary and synchronous frames makes the implementation of a synchronous frame regulator complex. Although the PI controller in the stationary frame gives a steady-state error and a phase delay, the control performance can be greatly improved by employing the exact decoupling control inputs for the back EMF., resulting in an ideal steady-state control characteristics irrespective of an operating condition as in the synchronous PI decoupling controller. However, its steady-state response may be degraded due to the inexact cancellation inputs under the parameter variations. To improve the control performance in the stationary frame, the disturbance is estimated using the time delay control. The proposed scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF

이중여자 유도발전 풍력시스템의 정상상태 특성 해석 (Analysis of Steady State Characteristics of Doubly-Fed Induction Generator in Wind Turbine system)

  • 장보경;노경수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.460_461
    • /
    • 2009
  • This paper analyzes the steady state characteristics for variable speed wind power system with doubly-fed induction generator(DFIG). This paper explains the equivalent circuit and phasor diagram of DFIG for different operating conditions. It also simulates the torque-slip characteristics with respect to changes of different parameters. Simulation results show the torque-slip characteristics, stator power factor-rotor voltage and stator current-rotor voltage.

  • PDF

Steady State and Transient Characteristics of a Rubber Belt CVT with Mechanical Actuators

  • Kim, Hyunsoo;Kim, Hyunsuk;Lee, Heera;Hanlim Song
    • Journal of Mechanical Science and Technology
    • /
    • 제16권5호
    • /
    • pp.639-646
    • /
    • 2002
  • In this paper, thrust equations for a rubber belt CVT are derived by considering the geometry and mechanism of the mechanical actuators. In order to solve the thrust equations, an algorithm to calculate the speed ratio is suggested for the given driver speed and load torque based on the actuator characteristic equations and existing formula for the belt thrust forces. Experiments are performed to investigate the driver speed-load torque-speed ratio characteristics at a steady state. The speed and torque efficiencies are measured and used to modify the actuator equations. It is found that the modified equations well predict the steady state characteristics. In addition, the shift dynamic model for a rubber belt CVT is derived experimentally. Simulation results of the CVT shift dynamics are in good accordance with the experiments and it is noted that different coefficients are required to describe the CVT shift dynamics for the upshift and the downshift.

멀티형 냉동 시스템의 정상상태 및 과도응답 특성 해석 (Analysis of the steady state and transient characteristics of a multi-type refrigeration system)

  • 이길봉;유근중;김민수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.439-444
    • /
    • 2005
  • Steady state simulation and dynamic simulation were performed to analyze the operational characteristics of a multi-type refrigeration system, Fully distributed model was adopted to simulate the steady state and transient responses of the system. The main aim was to see the effect of one indoor unit on the other unit. Numerical simulations were carried out for various operation conditions of an indoor unit - secondary fluid inlet temperature, mass flow rate and expansion valve opening. The results showed that the inlet temperature and mass flow rate of the secondary fluid of one indoor unit had minor effect on the operation of the other unit. However, the opening of the expansion valve had significant effect on the performance of the other unit.

  • PDF

증배형 부하회복 모델을 포함하는 연속법 기반 준정적 해석 (Continuation-Based Quasi-Steady-State Analysis Incorporating Multiplicative Load Restoration Model)

  • 송화창
    • 제어로봇시스템학회논문지
    • /
    • 제14권2호
    • /
    • pp.111-117
    • /
    • 2008
  • This paper presents a new continuation-based quasi-steady-state(CQSS) time-domain simulation algorithm incorporating a multiplicative aggregated load model for power systems. The authors' previous paper introduced a CQSS algorithm, which has the robust convergent characteristic near the singularity point due to the application of a continuation method. The previous CQSS algorithm implemented the load restoration in power systems using the exponent-based load recovery model that is derived from the additive dynamic load model. However, the reformulated exponent-based model causes the inappropriate variation of short-term load characteristics when switching actions occur, during time-domain simulation. This paper depicts how to incorporate a multiplicative load restoration model, which does not have the problem of deforming short-term load characteristics, into the time simulation algorithm, and shows an illustrative example with a 39-bus test system.

비례적분+이중적분 제어기를 이용한 정상상태 응답 개선 (Improvement of Steady State Response Using PI+Double Integral Controller)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권3호
    • /
    • pp.24-31
    • /
    • 2016
  • The performance characteristics of a dynamic control system are evaluated according to the transient and steady-state responses. The transient performance is the controllability of the output for the tracking of the reference or the ability to reduce or reject the effects of unwanted disturbances; alternatively, the steady-state performance is represented by the magnitude of the control error at the steady state. As the effects of the two performances on each other are reciprocal, a controller design that shows a zero steady-state error for the ramp input is uncommon because of the challenge regarding the achievement of an acceptable transient response. This paper proposes a PI+double-integral controller for the elimination of the steady-state error for the ramp input while a sound transient performance is maintained. The control-gain design procedure is described by the second-order response for the step input and the response of the error dynamics for the ramp input. The PI+double-integral controller is designed for the first-order transfer function that is derived from a system identification with the open-loop experiment data of the dc-motor. The simple structure of the proposed controller enables the adoption of a low-end microcontroller for the implementation of a real-time control. The experiment results show that the control performance is as effective as that of the simulation analysis for the operating point of linear system; furthermore, the PI+double-integral controller can be conveniently applied to the control system, which is desirable for the improvement of the steady-state error.

Some properties of the regenerative process

  • Shim, Donghee
    • 경영과학
    • /
    • 제14권2호
    • /
    • pp.63-68
    • /
    • 1997
  • Limiting probability in the steady state of regenerative process is one of the most useful characteristics. The formula for this limiting probability in the steady state of the regenerative process is presented in this paper. Because this formula is for the general model, it can be applied to many special systems including 2-unit redundant system. An example for this formula is also presented.

  • PDF

단상 영구자석형 유도동기기의 정상상태 특성해석 (Steady-State Characteristic Analysis of Single-Phase Line-Start Permanent Magnet Synchronous Motor)

  • 강규홍;남혁;홍정표
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권2호
    • /
    • pp.53-60
    • /
    • 2003
  • This paper deals with steady-state analysis of a single-phase line-start permanent magnet synchronous motor. In order to analyze the steady-state characteristics, the asymmetric single-phase line-start synchronous motor is converted to the symmetric two-phase synchronous motor, that is, the asymmetric magnetic field is separated from the positive and the negative symmetric components using symmetrical-component theory. The analysis method of the synchronous motor on the d-q axis coordinates is used for the positive component and the equivalent circuit of the induction motor is applied for the negative component analysis. Moreover, d-q axis inductance considering current phase angle is applied to positive component analysis for precise characteristic analysis. In order to validate the proposed analysis method, the analysis results are compared with the experimental results.

롤 운동을 고려한 차량의 정상상태 선회주행에 관한 연구 (A Study on the Steady-State Cornering of a Vehicle Considering Roll Motion)

  • 이장무;윤중락;강주석;배상우;탁태오
    • 한국자동차공학회논문집
    • /
    • 제5권6호
    • /
    • pp.89-102
    • /
    • 1997
  • In this study, the steady state cornering behavior of a vehicle is investigated by using a numerical model that has parameters associated with roll motion. The nonlinear characteristics of tire cornering forces and aligning torques are presented in analytical forms using the magic formula. The sets of nonlinear algebraic equations that govern the cornering motion are solved by the Newton-Raphson iteration method. The vehicle design parameters are measured by SPMD(Suspension Parameter Measuring Device), and its results are verified by carrying out a skid pad test. The design parameters that are most affecting the steady state cornering behavior are classified into four factors, and the contributions of the factors to understeer gradient are then calculated.

  • PDF