• Title/Summary/Keyword: stayed-cables

Search Result 183, Processing Time 0.022 seconds

A Study on Tension for Cables of a Cable-stayed Bridge Damper is Attached (댐퍼가 부착된 사장교의 케이블 장력에 관한연구)

  • Park, Yeon Soo;Choi, Sun Min;Yang, Won Yeol;Hong, Hye Jin;Kim, Woon Hyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.609-616
    • /
    • 2008
  • Recently, many ocean bridges that connect land to island or island to island have been constructed along with the improvement of the nation's economy. Long-span bridges can be categorized as suspension bridge, cable-stayed bridge, arch bridge and truss bridge. In this study, correction with respect to construction error can be presented on site through the monitoring of the cable tension change of real structure for four major construction stages so that construction accuracy, including the management of profiles, can be improved. A vibration method, the so-called indirect method that uses the cable's natural frequency changes from the acceleration sensor installed on the cable, is applied in measuring cable tension. In this study, the estimation formula for the effective length of cable with damper is presented by comparing and analyzing between actual measurement and analysis result for the change of the cable's effective length. By the way, it is known that the reliability of estimating cable tension by applying the former method that uses the net distance from damper to anchorage is low. Therefore, for future reference of the maintenance stage, the presented formula for estimating the effective length of cable can be used as a reference for the rational decision-making, such as the re-tensioning and replacement of cable.

Vision-based Method for Estimating Cable Tension Using the Stay Cable Shape (사장재 케이블 형태를 이용하여 케이블 장력을 추정하는 영상기반 방법)

  • Jin-Soo Kim;Jae-Bong Park;Deok-Keun Lee;Dong-Uk Park;Sung-Wan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.98-106
    • /
    • 2024
  • Due to advancements in construction technology and analytical tools, an increasing number of cable-stayed bridges have been designed and constructed in recent years. A cable is a structural element that primarily transmits the main load of a cable-stayed bridge and plays the most crucial role in reflecting the overall condition of the entire bridge system. In this study, a vision-based method was applied to estimate the tension of the stay cables located at a long distance. To measure the response of a cable using a vision-based method, it is necessary to install feature points or targets on the cable. However, depending on the location of the point to be measured, there may be no feature points in the cable, and there may also be limitations in installing the target on the cable. Hence, it is necessary to find a way to measure cable response that overcomes the limitations of existing vision-based methods. This study proposes a method for measuring cable responses by utilizing the characteristics of cable shape. The proposed method involved extracting the cable shape from the acquired image and determining the center of the extracted cable shape to measure the cable response. The extracted natural frequencies of the vibration mode were obtained using the measured responses, and the tension was estimated by applying them to the vibration method. To verify the reliability of the vision-based method, cable images were obtained from the Hwatae Bridge in service under ambient vibration conditions. The reliability of the method proposed in this study was confirmed by applying it to the vibration method using a vision-based approach, resulting in estimated tensions with an error of less than 1% compared to tensions estimated using an accelerometer.

Shear Force Variation of Stiffening Girder caused by Vibration of Stay Cable (사장 케이블 진동에 의한 보강형의 전단력 변화)

  • Kim, Hyeon Kyeom;Hwang, Jae Woong;Lee, Myeong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.1-8
    • /
    • 2009
  • Stay cable is easily exposed to vibration induced rainy wind effects. There are some problems for not only unexpected vibration but also well-known vibration. An outbreak of displacement by the said effects brings damages such as over-tension of cables and barriers, fatigue of anchorages and dampers, and additional shear force variation of stiffening girders. This study suggests analytic methodology for dynamic tension variation of cables and shear force variation of stiffening girders. Additionally this study announces with dynamic problems for cable stayed bridge briefly. To realize this subject, we divide restoring force into chord component and normal component and then make up the differential equations which can satisfy physical phenomenon for each component. Finally we apply adequate functions such as sinusoidal and parabola in order to reduce these differential equations. Therefore we can meet with good results through a series of above process. As a remarkable result, CIP recommendations (2002) give inadequate solution with over 10% error. However it gives very good solution if parts of our study are reflected at the said recommendations. The fact means that CIP recommendations (2002) well-known as international standard of stay cables are not even concern about this subject yet. For verification of this study, F.E. analysis using E.C.C. with external forces was fulfilled, and the accuracy and conciseness of this study were shown.

Full Scale Measurement on Stay Cables of a Cable Stayed Bridgefor Estimation of Damping Ratios (실교량 계측에 기반한 사장 케이블의 감쇠비 추정)

  • Kim, Saang-Bum;Im, Duk-Ki;Kim, Chang-Hyun;Lee, Jong-Sup
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.421-424
    • /
    • 2009
  • 사장교 케이블의 감쇠비를 추정하기 위하여 실교량 계측을 수행하였다. 사장교 케이블은 감쇠비가 낮고, 고유 진동수가 케이블의 길이에 따라 넓은 범위에 걸쳐 분포하므로, 바람이나 지점 가진에 의하여 과도한 진동이 발생될 수 있다. 케이블 진동 현상의 원인과 발생되고 진행되는 구조는 다양하나, 진동 현상의 가장 중요한 요소는 감쇠비이며, 케이블 진동의 과도한 진동을 감소시키기 위하여, 케이블의 감쇠비를 증가시키는 방법이 널리 사용되고 있다. 사장교 케이블의 다양한 진동 현상에 대한 발생 여부를 판단하고, 케이블 댐퍼와 같은 여러 제진 대책을 설계하고, 설치된 케이블 제진 대책의 성능을 검증하기 위해서는, 케이블의 감쇠비를 추정하는 것이 매우 중요하다. 일반적으로 사용되어져 온 케이블의 감쇠비 추정 방법은 정해진 모드로 자유 진동을 발생시킨 후, 진폭의 감소 추세로부터 Logarithmic Decrement를 계산하여 감쇠비를 구하는 방법이다. 그러나 수백m에 이르는 긴 케이블에서 정해진 모드의 자유 진동을 발생시키는 것은 쉽지 않다. 최근에는 상시 진동으로부터 감쇠비를 추정하는 여러 기법들이 개발되어져 왔으며, Frequency Domain Decomposition Method나 Stochastic Subspace Identification Method 등이 많이 사용되고 있다. 이 논문에서는, 상시진동 기반의 기법들을 사용하여, 사장교 케이블의 감쇠비를 추정하였으며, 추정된 감쇠비의 신뢰도를 높이기 위해, 측정시간을 늘리고, 가진 풍하중의 영향을 반영하여 보정하였다. 또한 추정된 감쇠비를 Buffeting 진동과 와류 진동과 같이 진동 현상과 진폭별로 분석하였다.

  • PDF

Galloping analysis of stranded electricity conductors in skew winds

  • Macdonald, J.H.G.;Griffiths, P.J.;Curry, B.P.
    • Wind and Structures
    • /
    • v.11 no.4
    • /
    • pp.303-321
    • /
    • 2008
  • When first commissioned, the 1.6 km span 275kV Severn Crossing Conductor experienced large amplitude vibrations in certain wind conditions, but without ice or rain, leading to flashover between the conductor phases. Wind tunnel tests undertaken at the time identified a major factor was the lift generated in the critical Reynolds number range in skew winds. Despite this insight, and although a practical solution was found by wrapping the cable to change the aerodynamic profile, there remained some uncertainty as to the detailed excitation mechanism. Recent work to address the problem of dry inclined cable galloping on cable-stayed bridges has led to a generalised quasi-steady galloping formulation, including effects of the 3D geometry and changes in the static force coefficients in the critical Reynolds number range. This generalised formulation has been applied to the case of the Severn Crossing Conductor, using data of the static drag and lift coefficients on a section of the stranded cable, from the original wind tunnel tests. Time history analysis has then been used to calculate the amplitudes of steady state vibrations for comparison with the full scale observations. Good agreement has been obtained between the analysis and the site observations, giving increased confidence in the applicability of the generalised galloping formulation and providing insight into the mechanism of galloping of yawed and stranded cables. Application to other cable geometries is also discussed.

Structural monitoring and identification of civil infrastructure in the United States

  • Nagarajaiah, Satish;Erazo, Kalil
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.51-69
    • /
    • 2016
  • Monitoring the performance and estimating the remaining useful life of aging civil infrastructure in the United States has been identified as a major objective in the civil engineering community. Structural health monitoring has emerged as a central tool to fulfill this objective. This paper presents a review of the major structural monitoring programs that have been recently implemented in the United States, focusing on the integrity and performance assessment of large-scale structural systems. Applications where response data from a monitoring program have been used to detect and correct structural deficiencies are highlighted. These applications include (but are not limited to): i) Post-earthquake damage assessment of buildings and bridges; ii) Monitoring of cables vibration in cable-stayed bridges; iii) Evaluation of the effectiveness of technologies for retrofit and seismic protection, such as base isolation systems; and iv) Structural damage assessment of bridges after impact loads resulting from ship collisions. These and many other applications show that a structural health monitoring program is a powerful tool for structural damage and condition assessment, that can be used as part of a comprehensive decision-making process about possible actions that can be undertaken in a large-scale civil infrastructure system after potentially damaging events.

Initial Equilibrium Configuration Analysis for Bridges Supported with Stayed and Suspended Cables (사장-현수 복합케이블 교량에 대한 초기평형상태 해석)

  • Kim, Kyu-Hwan;Kim, Ho-Kyung;Lee, Hae-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.76-77
    • /
    • 2011
  • 본 논문에서는 새로운 케이블 교량 형식인 사장-현수 복합케이블 교량 형식에 대한 초기평형상태 해석방법을 제시한다. 구체적으로 복합케이블 교량의 해석방법으로 다음과 같은 두 가지 방법을 제안한다. 우선 사장교의 초기평형상태 해석에서 사용된 전체 구조물을 하나의 구조물로 생각하여 해석하는 일괄방식 해석방법을 제안한다. 이 방법을 적용하는 과정에서 행어부문의 거동이 기존의 가정에 위배되는 문제점이 발견되었는데, 이러한 문제점은 변위복원방식의 successive iteration 을 적용하여 해결하였다. 다음으로 현수교의 초기평형상태 해석에서 사용된 전체 구조물을 현수교 부문과 사장교 부문 그리고 행어 부문의 3가지 부문으로 분리하여 해석하는 분리방식 해석방법을 제안한다. 이 방법을 적용하는 과정에서는 위의 일괄방식 해석방법에서 나타난 행어의 거동이 기존의 가정에 위배되는 현상과 더불어, 분리된 각 부문의 평형 조건과 적합조건이 일치하지 않는다는 문제점이 발생하였다. 이러한 추가의 문제점은 타워 최상단부의 수평변위를 적절히 구속시키고 각 부문 해석의 초기값을 조절하여 해결하였다. 마지막으로 제안된 두 가지 방법을 Deck에 캠버가 있는 적절한 예제를 통해서 검증하였다.

  • PDF

A Study on the Efficient Tension Estimation of Cables under Ambient Vibration using Minimized Measurement and Signal Processing System (최소화된 계측 및 신호 처리 시스템을 이용한 상시진동 케이블의 효율적인 장력 추정에 관한 연구)

  • Lee, Hyeong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.594-603
    • /
    • 2018
  • Recently, according to the development of measurement techniques, it has become possible to take complicated and time-consuming field measurements in a simple and convenient manner. In this background, this study estimated the tension of cables under ambient vibration using minimized measurement and signal processing. The VBDM using video-only by low-cost equipment was used as a minimized measurement. An estimation of the natural frequency using the mirror frequency concept was also proposed to solve the shortage of frequency band in this case. Furthermore, the FDD method was adopted for a natural frequency estimation in the ambient vibration related to field application. Experimental studies using a cable-stayed bridge model were carried out to examine the properties of the mirror frequency and the applicability of FDD with the proposed minimized system. The results showed that FDD for ambient vibration also works properly in an estimation of the natural frequency using the minimized system. In addition, the mirror frequency concept can allow a high natural frequency estimation even in a distorted signal by low-speed recording, which can overcome the limit of the minimized system. Overall, the proposed minimized system can be effective for the tension estimations of a cable under ambient vibration.

Large eddy simulation of flow around a stay cable with an artificial upper rivulet

  • Zhao, Yan;Du, Xiaoqing;Gu, Ming;Yang, Xiao;Li, Junjun;He, Ping
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.215-229
    • /
    • 2018
  • The appearance of a rivulet at the upper surface of a stay cable is responsible for rain-wind-induced vibration (RWIV) of cables of cable-stayed bridges. However, the formation mechanism of the upper rivulet and its aerodynamic effects on the stay cable has not been fully understood. Large eddy simulation (LES) method is used to investigate flow around and aerodynamics of a circular cylinder with an upper rivulet at a Reynolds number of 140,000. Results show that the mean lift coefficients of the circular cylinder experience three distinct stages, zero-lift stage, positive-lift stage and negative-lift stage as the rivulet located at various positions. Both pressure-induced and friction-induced aerodynamic forces on the upper rivulet are helpful for its appearance on the upside of the stay cable. The friction-induced aerodynamic forces, which have not been considered in the previous theoretical models, may not be neglected in modeling the RWIV. In positive-lift stage, the shear layer separated from the upper rivulet can reattach on the surface of the cylinder and form separation bubbles, which result in a high non-zero mean lift of the cylinder and potentially induces the occurrence of RWIV. The separation bubbles are intrinsically unsteady flow phenomena. A serial of small eddies first appears in the laminar shear layer separated from the upper rivulet, which then coalesces and reattaches on the side surface of the cylinder and eventually sheds into the wake.

Responses of self-anchored suspension bridge to sudden breakage of hangers

  • Qiu, Wenliang;Jiang, Meng;Zhang, Zhe
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.241-255
    • /
    • 2014
  • The girder of self-anchored suspension bridge is subjected to large compression force applied by main cables. So, serious damage of the girder due to breakage of hangers may cause collapse of the whole bridge. With the time increasing, the hangers may break suddenly for their resistance capacities decrease due to corrosion. Using nonlinear static and dynamic analysis methods and adopting 3D finite element model, the responses of a concrete self-anchored suspension bridge to sudden breakage of hangers are studied in this paper. The results show that the sudden breakage of a hanger has significant effects on tensions of the hangers next to the broken hanger, bending and torsion moments of the girder, moments of the towers and reaction forces of the bearings. The results obtained from dynamic analysis method are very different from those obtained from static analysis method. The maximum tension of hanger produced by breakage of a hanger exceeds 2.2 times of its initial value, the maximum dynamic amplification factor reaches 2.54, which is larger than the value of 2.0 recommended for cable-stayed bridge in PTI codes. If two adjacent hangers on the same side of bridge break one after another, the maximum tension of other hangers exceeds 3.0 times of its initial value. If the safety factor adopted to design hanger is too small, or the hangers have been exposed to corrosion, the bridge may collapse due to breakage of two adjacent hangers.