• Title/Summary/Keyword: stay cable

Search Result 150, Processing Time 0.029 seconds

Completing the Seohae Grand Bridge Construction Supervision (서해대교 감리를 마치며)

  • 전준수
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.1
    • /
    • pp.23-26
    • /
    • 2001
  • Seohae Grand Bridge is a part of the new West Coast Highway(353km) under construction, which connects Inchon and Mokpo. It is the longest bridge in Korea (7.31 km), and has 97 spans of 60m each precast segmental approach bridges, 2 main spans of 165m each free cantilever segmental bridge(500m), and 1 stay cable bridge of 990m In total length. During the seven year long construction period, many new construction technologies and methods were utilized for the first time in Korea, and gave invaluable opportunities to experience and master these in completing the project on time with safety and precision. I am proud of being a member of this project, and wish to express deep appreciations to those who participated in the project.

  • PDF

Study on Stress Recovery Length of 7-Wire Strand due to Local Damage (강연선의 국부적 손상에 따른 응력 회복길이 분석 연구)

  • Seo, Dong-Woo;Kim, Byung-Chul;Jung, Kyu-San;Na, Wongi;Park, Ki-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.150-156
    • /
    • 2017
  • This study examined the stress recovery length due to the local damage of a 7-wire strand, which is applied widely to PSC (Post Tensioned Concrete) bridges and cable-stayed bridges. The 7-wire strand is a multiple stranded steel of PC prestressing strand. Owing to the nature of the material, it is damaged continuously after completion with corrosion being the main cause of damage. On the other hand, due to its structural characteristics, it is difficult to grasp the degree of damage inside the cable and the pattern of stress variation. In the case of cables applied to bridges, the parts that are susceptible to corrosion are generated depending on the water supply and installation shape, which may cause local damage. This study analyzed the tendency of performance degradation and stress recovery length according to local damage of a 7-wire strand, which is applied mainly to bridge post-tensioning or stay cables. This study developed a computer-based simulation model that was validated with experimental results. The model developed in this study can be used to evaluate the safety level and estimate the remaining life span of P SC bridges or cable-stayed bridges.

Selection of measurement sets in static structural identification of bridges using observability trees

  • Lozano-Galant, Jose Antonio;Nogal, Maria;Turmo, Jose;Castillo, Enrique
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.771-794
    • /
    • 2015
  • This paper proposes an innovative method for selection of measurement sets in static parameter identification of concrete or steel bridges. This method is proved as a systematic tool to address the first steps of Structural System Identification procedures by observability techniques: the selection of adequate measurement sets. The observability trees show graphically how the unknown estimates are successively calculated throughout the recursive process of the observability analysis. The observability trees can be proved as an intuitive and powerful tool for measurement selection in beam bridges that can also be applied in complex structures, such as cable-stayed bridges. Nevertheless, in these structures, the strong link among structural parameters advises to assume a set of simplifications to increase the tree intuitiveness. In addition, a set of guidelines are provided to facilitate the representation of the observability trees in this kind of structures. These guidelines are applied in bridges of growing complexity to explain how the characteristics of the geometry of the structure (e.g. deck inclination, type of pylon-deck connection, or the existence of stay cables) affect the observability trees. The importance of the observability trees is justified by a statistical analysis of measurement sets randomly selected. This study shows that, in the analyzed structure, the probability of selecting an adequate measurement set with a minimum number of measurements at random is practically negligible. Furthermore, even bigger measurement sets might not provide adequate SSI of the unknown parameters. Finally, to show the potential of the observability trees, a large-scale concrete cable-stayed bridge is also analyzed. The comparison with the number of measurements required in the literature shows again the advantages of using the proposed method.

Full Scale Measurement on Stay Cables of a Cable Stayed Bridgefor Estimation of Damping Ratios (실교량 계측에 기반한 사장 케이블의 감쇠비 추정)

  • Kim, Saang-Bum;Im, Duk-Ki;Kim, Chang-Hyun;Lee, Jong-Sup
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.421-424
    • /
    • 2009
  • 사장교 케이블의 감쇠비를 추정하기 위하여 실교량 계측을 수행하였다. 사장교 케이블은 감쇠비가 낮고, 고유 진동수가 케이블의 길이에 따라 넓은 범위에 걸쳐 분포하므로, 바람이나 지점 가진에 의하여 과도한 진동이 발생될 수 있다. 케이블 진동 현상의 원인과 발생되고 진행되는 구조는 다양하나, 진동 현상의 가장 중요한 요소는 감쇠비이며, 케이블 진동의 과도한 진동을 감소시키기 위하여, 케이블의 감쇠비를 증가시키는 방법이 널리 사용되고 있다. 사장교 케이블의 다양한 진동 현상에 대한 발생 여부를 판단하고, 케이블 댐퍼와 같은 여러 제진 대책을 설계하고, 설치된 케이블 제진 대책의 성능을 검증하기 위해서는, 케이블의 감쇠비를 추정하는 것이 매우 중요하다. 일반적으로 사용되어져 온 케이블의 감쇠비 추정 방법은 정해진 모드로 자유 진동을 발생시킨 후, 진폭의 감소 추세로부터 Logarithmic Decrement를 계산하여 감쇠비를 구하는 방법이다. 그러나 수백m에 이르는 긴 케이블에서 정해진 모드의 자유 진동을 발생시키는 것은 쉽지 않다. 최근에는 상시 진동으로부터 감쇠비를 추정하는 여러 기법들이 개발되어져 왔으며, Frequency Domain Decomposition Method나 Stochastic Subspace Identification Method 등이 많이 사용되고 있다. 이 논문에서는, 상시진동 기반의 기법들을 사용하여, 사장교 케이블의 감쇠비를 추정하였으며, 추정된 감쇠비의 신뢰도를 높이기 위해, 측정시간을 늘리고, 가진 풍하중의 영향을 반영하여 보정하였다. 또한 추정된 감쇠비를 Buffeting 진동과 와류 진동과 같이 진동 현상과 진폭별로 분석하였다.

  • PDF

Wake galloping phenomena between two parallel/unparallel cylinders

  • Kim, Sunjoong;Kim, Ho-Kyung
    • Wind and Structures
    • /
    • v.18 no.5
    • /
    • pp.511-528
    • /
    • 2014
  • The characteristics of wake galloping phenomenon for two parallel/unparallel circular cylinders were investigated via wind tunnel tests. The two cylinders were initially deployed in parallel and wake galloping phenomena were observed by varying the center-to-center distance. The effect of an unparallel arrangement of two cylinders was next investigated by fixing the spacing ratio of one side of the cylinders at 5.0D and the other side at 3.0D, in which D represents the diameter of the cylinder. For the unparallel disposition, the 5.0D side showed a small, limited vibration while the 3.0D side produced much larger amplitude of vibration, resulting in a rolling motion. However, the overall amplitude appeared to decrease in unparallel disposition when compared with the amplitude of the 3.0D - 3.0D parallel case. This represents the mitigation effect of wake galloping due to the unparallel disposition between two cylinders. Flow visualization tests with particle image velocimetry were conducted to identify flow fields between two cylinders. The test results demonstrate the existence of a complex interaction of the downstream cylinder with the shear layer generated by the upstream cylinder. When the spacing ratio was large enough, the shear layer was not observed and the downstream cylinder showed only limited random vibration.

Wind vibration control of stay cables using an evolutionary algorithm

  • Chen, Tim;Huang, Yu-Ching;Xu, Zhao-Wang;Chen, J.C.Y.
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.71-80
    • /
    • 2021
  • In steel cable bridges, the use of magnetorheological (MR) dampers between butt cables is constantly increasing to dampen vibrations caused by rain and wind. The biggest problem in the actual applications of those devices is to launch a kind of appropriate algorithm that can effectively and efficiently suppress the perturbation of the tie through basic calculations and optimal solutions. This article discusses the optimal evolutionary design based on a linear and quadratic regulator (hereafter LQR) to lessen the perturbation of the bridges with cables. The control numerical algorithms are expected to effectively and efficiently decrease the possible risks of the structural response in amplification owing to the feedback force in the direction of the MR attenuator. In addition, these numerical algorithms approximate those optimal linear quadratic regulator control forces through the corresponding damping and stiffness, which significantly lessens the work of calculating the significant and optimal control forces. Therefore, it has been shown that it plays an important and significant role in the practical application design of semiactive MR control power systems. In the present proposed novel evolutionary parallel distributed compensator scheme, the vibrational control problem with a simulated demonstration is used to evaluate the numerical algorithmic performance and effectiveness. The results show that these semiactive MR control numerical algorithms which are present proposed in the present paper has better performance than the optimal and the passive control, which is almost reaching the levels of linear quadratic regulator controls with minimal feedback requirements.

Multi-point earthquake response of the Bosphorus Bridge to site-specific ground motions

  • Bas, Selcuk;Apaydin, Nurdan Memisoglu;Harmandar, Ebru;Catbas, Necati
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.197-211
    • /
    • 2018
  • The study presents the earthquake performance of the Bosphorus Bridge under multi-point earthquake excitation considering the spatially varying site-specific earthquake motions. The elaborate FE model of the bridge is firstly established depending on the new considerations of the used FEM software specifications, such as cable-sag effect, rigid link and gap elements. The modal analysis showed that singular modes of the deck and the tower were relatively effective in the dynamic behavior of the bridge due to higher total mass participation mass ratio of 80%. The parameters and requirements to be considered in simulation process are determined to generate the spatially varying site-specific ground motions. Total number of twelve simulated ground motions are defined for the multi-support earthquake analysis (Mp-sup). In order to easily implement multi-point earthquake excitation to the bridge, the practice-oriented procedure is summarized. The results demonstrated that the Mp-sup led to high increase in sectional forces of the critical components of the bridge, especially tower base section and tensile force of the main and back stay cables. A close relationship between the dynamic response and the behavior of the bridge under the Mp-sup was also obtained. Consequently, the outcomes from this study underscored the importance of the utilization of the multi-point earthquake analysis and the necessity of considering specifically generated earthquake motions for suspension bridges.

Characteristic of Wind Pressure Distribution on the Roof of Hyperbolic Paraboloid Spatial Structures (쌍곡포물선 대공간구조물의 지붕 풍압계수분포 특성)

  • You, Ki-Pyo;Kim, Young-Moon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.3
    • /
    • pp.47-54
    • /
    • 2012
  • The roof surface of spatial structures is often damaged or destroyed because of its light weight roof structure and materials. Many of large scale stadiums have roof structure framed with steel truss or stay cable and wrapped or covered with membrane material Teflon, and this membrane material is easily damaged and its loss is quite serious. Through such examples, it was found that the studies on wind proof design of roofs of large space structures were not sufficiently made. This study conducted wind pressure experiment and fluid analysis in order to examine the aerodynamic characteristic of the roof shape of hyperbolic paraboloid spatial structures. Although the biggest minimum peak wind pressure coefficient was shown in the edges of the roof in the wind origin direction, it decreases with the advancement to the longitudinal direction of the roof.

Towards high-accuracy data modelling, uncertainty quantification and correlation analysis for SHM measurements during typhoon events using an improved most likely heteroscedastic Gaussian process

  • Qi-Ang Wang;Hao-Bo Wang;Zhan-Guo Ma;Yi-Qing Ni;Zhi-Jun Liu;Jian Jiang;Rui Sun;Hao-Wei Zhu
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.267-279
    • /
    • 2023
  • Data modelling and interpretation for structural health monitoring (SHM) field data are critical for evaluating structural performance and quantifying the vulnerability of infrastructure systems. In order to improve the data modelling accuracy, and extend the application range from data regression analysis to out-of-sample forecasting analysis, an improved most likely heteroscedastic Gaussian process (iMLHGP) methodology is proposed in this study by the incorporation of the outof-sample forecasting algorithm. The proposed iMLHGP method overcomes this limitation of constant variance of Gaussian process (GP), and can be used for estimating non-stationary typhoon-induced response statistics with high volatility. The first attempt at performing data regression and forecasting analysis on structural responses using the proposed iMLHGP method has been presented by applying it to real-world filed SHM data from an instrumented cable-stay bridge during typhoon events. Uncertainty quantification and correlation analysis were also carried out to investigate the influence of typhoons on bridge strain data. Results show that the iMLHGP method has high accuracy in both regression and out-of-sample forecasting. The iMLHGP framework takes both data heteroscedasticity and accurate analytical processing of noise variance (replace with a point estimation on the most likely value) into account to avoid the intensive computational effort. According to uncertainty quantification and correlation analysis results, the uncertainties of strain measurements are affected by both traffic and wind speed. The overall change of bridge strain is affected by temperature, and the local fluctuation is greatly affected by wind speed in typhoon conditions.

Calculation of Unit Hydrograph from Discharge Curve, Determination of Sluice Dimension and Tidal Computation for Determination of the Closure curve (단위유량도와 비수갑문 단면 및 방조제 축조곡선 결정을 위한 조속계산)

  • 최귀열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.7 no.1
    • /
    • pp.861-876
    • /
    • 1965
  • During my stay in the Netherlands, I have studied the following, primarily in relation to the Mokpo Yong-san project which had been studied by the NEDECO for a feasibility report. 1. Unit hydrograph at Naju There are many ways to make unit hydrograph, but I want explain here to make unit hydrograph from the- actual run of curve at Naju. A discharge curve made from one rain storm depends on rainfall intensity per houre After finriing hydrograph every two hours, we will get two-hour unit hydrograph to devide each ordinate of the two-hour hydrograph by the rainfall intensity. I have used one storm from June 24 to June 26, 1963, recording a rainfall intensity of average 9. 4 mm per hour for 12 hours. If several rain gage stations had already been established in the catchment area. above Naju prior to this storm, I could have gathered accurate data on rainfall intensity throughout the catchment area. As it was, I used I the automatic rain gage record of the Mokpo I moteorological station to determine the rainfall lntensity. In order. to develop the unit ~Ydrograph at Naju, I subtracted the basic flow from the total runoff flow. I also tried to keed the difference between the calculated discharge amount and the measured discharge less than 1O~ The discharge period. of an unit graph depends on the length of the catchment area. 2. Determination of sluice dimension Acoording to principles of design presently used in our country, a one-day storm with a frequency of 20 years must be discharged in 8 hours. These design criteria are not adequate, and several dams have washed out in the past years. The design of the spillway and sluice dimensions must be based on the maximun peak discharge flowing into the reservoir to avoid crop and structure damages. The total flow into the reservoir is the summation of flow described by the Mokpo hydrograph, the basic flow from all the catchment areas and the rainfall on the reservoir area. To calculate the amount of water discharged through the sluiceCper half hour), the average head during that interval must be known. This can be calculated from the known water level outside the sluiceCdetermined by the tide) and from an estimated water level inside the reservoir at the end of each time interval. The total amount of water discharged through the sluice can be calculated from this average head, the time interval and the cross-sectional area of' the sluice. From the inflow into the .reservoir and the outflow through the sluice gates I calculated the change in the volume of water stored in the reservoir at half-hour intervals. From the stored volume of water and the known storage capacity of the reservoir, I was able to calculate the water level in the reservoir. The Calculated water level in the reservoir must be the same as the estimated water level. Mean stand tide will be adequate to use for determining the sluice dimension because spring tide is worse case and neap tide is best condition for the I result of the calculatio 3. Tidal computation for determination of the closure curve. During the construction of a dam, whether by building up of a succession of horizontael layers or by building in from both sides, the velocity of the water flowinii through the closing gapwill increase, because of the gradual decrease in the cross sectional area of the gap. 1 calculated the . velocities in the closing gap during flood and ebb for the first mentioned method of construction until the cross-sectional area has been reduced to about 25% of the original area, the change in tidal movement within the reservoir being negligible. Up to that point, the increase of the velocity is more or less hyperbolic. During the closing of the last 25 % of the gap, less water can flow out of the reservoir. This causes a rise of the mean water level of the reservoir. The difference in hydraulic head is then no longer negligible and must be taken into account. When, during the course of construction. the submerged weir become a free weir the critical flow occurs. The critical flow is that point, during either ebb or flood, at which the velocity reaches a maximum. When the dam is raised further. the velocity decreases because of the decrease\ulcorner in the height of the water above the weir. The calculation of the currents and velocities for a stage in the closure of the final gap is done in the following manner; Using an average tide with a neglible daily quantity, I estimated the water level on the pustream side of. the dam (inner water level). I determined the current through the gap for each hour by multiplying the storage area by the increment of the rise in water level. The velocity at a given moment can be determined from the calcalated current in m3/sec, and the cross-sectional area at that moment. At the same time from the difference between inner water level and tidal level (outer water level) the velocity can be calculated with the formula $h= \frac{V^2}{2g}$ and must be equal to the velocity detertnined from the current. If there is a difference in velocity, a new estimate of the inner water level must be made and entire procedure should be repeated. When the higher water level is equal to or more than 2/3 times the difference between the lower water level and the crest of the dam, we speak of a "free weir." The flow over the weir is then dependent upon the higher water level and not on the difference between high and low water levels. When the weir is "submerged", that is, the higher water level is less than 2/3 times the difference between the lower water and the crest of the dam, the difference between the high and low levels being decisive. The free weir normally occurs first during ebb, and is due to. the fact that mean level in the estuary is higher than the mean level of . the tide in building dams with barges the maximum velocity in the closing gap may not be more than 3m/sec. As the maximum velocities are higher than this limit we must use other construction methods in closing the gap. This can be done by dump-cars from each side or by using a cable way.e or by using a cable way.

  • PDF