• Title/Summary/Keyword: statistical response evaluation

Search Result 163, Processing Time 0.023 seconds

INTRODUCTION OF THREE FUNCTIONAL MODELS MATCHED TO THE STOCHASTIC RESPONSE EVALUATION OF ACOUSTIC ENVIRONMENTAL SYSTEM AND ITS APPLICATION TO A SOUND INSULATION SYSTEM

  • Ohta, Mitsuo;Fujita, Yoshifumi
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.686-691
    • /
    • 1994
  • For evaluating the response fluctuation of the actual environmental acoustic system excited by arbitrary random inputs, it is important to predict a whole probability distribution form closely connected with evaluation indexes Lx, Leq and so on. In this paper, a new type evaluation method is proposed by introducing three functional models matched to the prediction of the response probability distribution from a problem-oriented viewpoint. Because of the positive variable of the sound intensity, the response probability density function can be reasonably expressed theoretically by a statistical Laguerre expansion series form. The relationship between input and output is described by the regression relationship between the distribution parameters(containing expansion coefficients of this expression) and the stochastic input. These regression functions are expressed in terms of the orthogonal series expansion and their parameters are determined based on the least-squares error criterion and the measure of statistical independency.

  • PDF

Response Calibration for Bridges based on Statistical Quality Control Chart (통계적 품질 관리도에 기초한 교량의 응답 보정)

  • Hwang, Jin Ha;An, Seoung Su;Kim, Ju Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.61-70
    • /
    • 2013
  • This paper presents the response calibration method based on quality control range, which is established from the concept and method of statistical quality control for natural frequency ratio and response ratio. To this end, statistical analysis including descriptive statistics analysis, normality test, ANOVA were performed for response characteristics obtained from loading tests and structural analysis for more than hundred and thirty well-conditioned bridges. Suggested method is based on real structural integrity evaluation case studies and statistical quality control approach, in this respect it is expected to provide scientific criteria and systematic procedure for response calibration and load carrying capacity assessment.

A Study on response time measurement of FPD using statistical techniques of histogram

  • Lee, Yeun-Woo;Park, Gi-Chang;Lee, Sang-Dae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.506-510
    • /
    • 2005
  • As FPD technology is getting improved, there are a lot of issues on signal processing and analysis, and its relative importance has been increasing day by day. In particular, response time sad in the evaluation item of FPD has been measured by oscilloscope. In this paper, we propose an effective measurement method of response time in FPD. The proposed method is to calculate the rising/ falling time by using statistical techniques of histogram and analyzing an energy distribution. Ultimately, the method has proved the utility and reliability by comparison of oscilloscope

  • PDF

Human Response Measurement and Ride Quality Evaluation for Seats having various Material Porperties (물성치가 다른 시트에서의 인체 진동 측정 및 승차감 평가)

  • 조영건;박세진;윤용산
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.171-180
    • /
    • 2000
  • This paper deals with the whole-body vibration and ride quality evaluation in the vertical direction. The responses of the floor, hip, back, and head in four subjects were measured for various seats when the floor was excited by random vibration with r.m.s of 1.2m/s2 in the vertical direction. In the transmissibility between the hip and floor, the fundamental mode is observed at 4.4 Hz. In the transmissibility between the head and floor, the fundamental mode at 4.4Hz and the second mode at 7.6Hz are observed. It is shown that the head motion is 41% larger than the hip motion and the response of female subject is larger than that of male subject. The response without backrest also was compared with that with backrest. From these human responses ride quality of five seats were evaluated by the ride value such as transfer ration having frequency weighting function is the statistical sense. It is observed that the seat having high damping property can reduce the most acceleration exposed to hip in the statistical sense for all ride valves, while the seat having different seat spring doesn't show statistical difference.

  • PDF

A Study on the Statistical Model Validation using Response-adaptive Experimental Design (반응적응 시험설계법을 이용하는 통계적 해석모델 검증 기법 연구)

  • Jung, Byung Chang;Huh, Young-Chul;Moon, Seok-Jun;Kim, Young Joong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.347-349
    • /
    • 2014
  • Model verification and validation (V&V) is a current research topic to build computational models with high predictive capability by addressing the general concepts, processes and statistical techniques. The hypothesis test for validity check is one of the model validation techniques and gives a guideline to evaluate the validity of a computational model when limited experimental data only exist due to restricted test resources (e.g., time and budget). The hypothesis test for validity check mainly employ Type I error, the risk of rejecting the valid computational model, for the validity evaluation since quantification of Type II error is not feasible for model validation. However, Type II error, the risk of accepting invalid computational model, should be importantly considered for an engineered products having high risk on predicted results. This paper proposes a technique named as the response-adaptive experimental design to reduce Type II error by adaptively designing experimental conditions for the validation experiment. A tire tread block problem and a numerical example are employed to show the effectiveness of the response-adaptive experimental design for the validity evaluation.

  • PDF

Evaluation of the Block Effects in Response Surface Designs with Random Block Effects over Cuboidal Regions

  • Park, Sang-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.741-757
    • /
    • 2000
  • In may experimental situations, whenever a block design is used, the block effect is usually considered to be fixed. There are, however, experimental situations in which it should be treated as random. The choice of a blocking arrangement for a response surface design can have a considerable effect on estimating the mean response and on the size of he prediction variance even if the experimental runs re the same. Therefore, care should be exercised in the selection of blocks. In this paper, in the presence of a random block effect, we propose a graphical method or evaluating the effect of blocking in response surface designs using cuboidal regions. This graphical method can be used to investigate how the blocking has influence on the prediction variance throughout all experimental regions of interest when this region is cuboidal, and compare the block effects in the cases of the orthogonal and non-orthogonal block designs, respectively.

  • PDF

Evaluating the Quality of the Differential Police Response Strategy: Applications of Statistical Quality Control Charts (통계적 품질관리도를 활용한 차별적 경찰대응전략의 평가)

  • Lee, Myungwoo;Kim, Jihoon;Park, Hanho
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.6
    • /
    • pp.529-536
    • /
    • 2016
  • The purpose of this research is to evaluate the quality of Differential Police Response strategy. Although it has been approximately three years since these new police response systems were introduced, there is no research to evaluate them empirically. Using two types of statistical quality control techniques, Xbar-R control charts for variables data and P charts for attributes data, this study analyzes approximately 3,000 calls reported throughout the year 2012 to the 112 Integrated Dispatch Center in Ik-san police station. The Xbar-R control charts revealed that the police did not consistently respond to an emergency call for service (i.e., code one case) within 3 minutes. The P control chart also identified that there was a significant variation in the portion/number of defective calls where police failed to respond to non-emergency calls for service within 5 minutes. The results from this study suggest the police may need to review the target response time for code 1 and code 2 respectively.

Evaluation and analytical approximation of Tuned Mass Damper performance in an earthquake environment

  • Tributsch, Alexander;Adam, Christoph
    • Smart Structures and Systems
    • /
    • v.10 no.2
    • /
    • pp.155-179
    • /
    • 2012
  • This paper aims at assessing the seismic performance of Tuned Mass Dampers (TMDs) based on sets of recorded ground motions. For the simplest configuration of a structure-TMD assembly, in a comprehensive study characteristic response quantities are derived and statistically evaluated. Optimal tuning of TMD parameters is discussed and evaluated. The response reduction by application of a TMD is quantified depending on the structural period, inherent damping of the stand-alone structure, and ratio of TMD mass to structural mass. The effect of detuning on the stroke of the TMD and on the structural response is assessed and quantified. It is verified that a TMD damping coefficient larger than the optimal one reduces the peak deflection of the TMD spring significantly, whereas the response reduction of the main structure remains almost unaffected. Analytical relations for quantifying the effect of a TMD are derived and subsequently evaluated. These relations allow the engineer in practice a fast and yet accurate assessment of the TMD performance.

Development of Evaluation Model of Pumping and Drainage Station Using Performance Degradation Factors (농업기반시설물 양·배수장의 성능저하 요인분석 및 성능평가 모델 개발)

  • Lee, Jonghyuk;Lee, Sangik;Jeong, Youngjoon;Lee, Jemyung;Yoon, Seongsoo;Park, Jinseon;Lee, Byeongjoon;Lee, Joongu;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.75-86
    • /
    • 2019
  • Recently, natural disasters due to abnormal climates are frequently outbreaking, and there is rapid increase of damage to aged agricultural infrastructure. As agricultural infrastructure facilities are in contact with water throughout the year and the number of them is significant, it is important to build a maintenance management system. Especially, the current maintenance management system of pumping and drainage stations among the agricultural facilities has the limit of lack of objectivity and management personnel. The purpose of this study is to develop a performance evaluation model using the factors related to performance degradation of pumping and drainage facilities and to predict the performance of the facilities in response to climate change. In this study, we focused on the pumping and drainage stations belonging to each climatic zone separated by the Korea geographical climatic classification system. The performance evaluation model was developed using three different statistical models of POLS, RE, and LASSO. As the result of analysis of statistical models, LASSO was selected for the performance evaluation model as it solved the multicollinearity problem between variables, and showed the smallest MSE. To predict the performance degradation due to climate change, the climate change response variables were classified into three categories: climate exposure, sensitivity, and adaptive capacity. The performance degradation prediction was performed at each facility using the developed performance evaluation model and the climate change response variables.

A Procedure for Statistical Thermal Margin Analysis Using Response Surface Method and Monte Carlo Technique (반응 표면 및 Monte Carlo 방법을 이용한 통계적 열여유도 분석 방법)

  • Hyun Koon Kim;Young Whan Lee;Tae Woon Kim;Soon Heung Chang
    • Nuclear Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.38-47
    • /
    • 1986
  • A statistical procedure, which uses response surface method and Monte Carlo simulation technique, is proposed for analyzing the thermal margin of light water reactor core. The statistical thermal margin analysis method performs the best.estimate thermal margin evaluation by the probabilistic treatment of uncertainties of input parameters. This methodology is applied to KNU-1 core thermal margin analysis under the steady state nominal operating condition. Also discussed are the comparisons with conventional deterministic method and Improved Thermal Design Procedure of Westinghouse. It is deduced from this study that the response surface method is useful for performing the statistical thermal margin analysis and that thermal margin improvement is assured through this procedure.

  • PDF