• Title/Summary/Keyword: statistical prediction

Search Result 1,579, Processing Time 0.031 seconds

Hidden Markov model with stochastic volatility for estimating bitcoin price volatility (확률적 변동성을 가진 은닉마르코프 모형을 통한 비트코인 가격의 변동성 추정)

  • Tae Hyun Kang;Beom Seuk Hwang
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.1
    • /
    • pp.85-100
    • /
    • 2023
  • The stochastic volatility (SV) model is one of the main methods of modeling time-varying volatility. In particular, SV model is actively used in estimation and prediction of financial market volatility and option pricing. This paper attempts to model the time-varying volatility of the bitcoin market price using SV model. Hidden Markov model (HMM) is combined with the SV model to capture characteristics of regime switching of the market. The HMM is useful for recognizing patterns of time series to divide the regime of market volatility. This study estimated the volatility of bitcoin by using data from Upbit, a cryptocurrency trading site, and analyzed it by dividing the volatility regime of the market to improve the performance of the SV model. The MCMC technique is used to estimate the parameters of the SV model, and the performance of the model is verified through evaluation criteria such as MAPE and MSE.

Machinability investigation of gray cast iron in turning with ceramics and CBN tools: Modeling and optimization using desirability function approach

  • Boutheyna Gasmi;Boutheyna Gasmi;Septi Boucherit;Salim Chihaoui;Tarek Mabrouki
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.119-137
    • /
    • 2023
  • The purpose of this research is to assess the performance of CBN and ceramic tools during the dry turning of gray cast iron EN GJL-350. During the turning operation, the variable machining parameters are cutting speed, feed rate, depth of cut and type of the cutting material. This contribution consists of two sections, the first one deals with the performance evaluation of four materials in terms of evolution of flank wear, surface roughness (2D and 3D) and cutting forces. The focus of the second section is on statistical analysis, followed by modeling and optimization. The experiments are conducted according to the Taguchi design L32 and based on ANOVA approach to quantify the impact of input factors on the output parameters, namely, the surface roughness (Ra), the cutting force (Fz), the cutting power (Pc), specific cutting energy (Ecs). The RSM method was used to create prediction models of several technical factors (Ra, Fz, Pc, Ecs and MRR). Subsequently, the desirability function approach was used to achieve a multi-objective optimization that encompasses the output parameters simultaneously. The aim is to obtain optimal cutting regimes, following several cases of optimization often encountered in industry. The results found show that the CBN tool is the most efficient cutting material compared to the three ceramics. The optimal combination for the first case where the importance is the same for the different outputs is Vc=660 m/min, f=0.116 mm/rev, ap=0.232 mm and the material CBN. The optimization results have been verified by carrying out confirmation tests.

Futures Price Prediction based on News Articles using LDA and LSTM (LDA와 LSTM를 응용한 뉴스 기사 기반 선물가격 예측)

  • Jin-Hyeon Joo;Keun-Deok Park
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.167-173
    • /
    • 2023
  • As research has been published to predict future data using regression analysis or artificial intelligence as a method of analyzing economic indicators. In this study, we designed a system that predicts prospective futures prices using artificial intelligence that utilizes topic probability data obtained from past news articles using topic modeling. Topic probability distribution data for each news article were obtained using the Latent Dirichlet Allocation (LDA) method that can extract the topic of a document from past news articles via unsupervised learning. Further, the topic probability distribution data were used as the input for a Long Short-Term Memory (LSTM) network, a derivative of Recurrent Neural Networks (RNN) in artificial intelligence, in order to predict prospective futures prices. The method proposed in this study was able to predict the trend of futures prices. Later, this method will also be able to predict the trend of prices for derivative products like options. However, because statistical errors occurred for certain data; further research is required to improve accuracy.

Urban flood prediction through the linkage between the statistical characteristics of rainfall and the AI model (강우의 통계적 특성과 AI 모형의 연계를 통한 도시침수예측)

  • Lee, Yeonsu;Yoo, Jaehwan;Kim, Hyun-il;Kim, Byunghyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.97-97
    • /
    • 2022
  • AI 모형을 적용한 도시지역 침수예측에 대한 연구는 꾸준히 수행되어 왔다. AI 모형을 이용해 도시침수예측을 하기 위해서는 모형에 강우자료를 학습시키게 되는데, 시계열 강우분포 자료를AI 모형의 학습자료로 사용하기에 자료의 양이 너무 많기 때문에 총 강우량만을 이용하여 도시침수예측을 수행한 바 있다(Kim et al., 2021). 하지만 총 강우량만을 AI 모형에 학습시킬 경우, 지속기간 동안 강우가 고르게 분포하는지 불규칙적으로 분포하는지에 대한 정보가 포함되지 않았기 때문에 침수예측력이 떨어질 수 있다. 따라서 본 연구에서는 시계열 강우자료의 통계치를 산정하여 AI 모형에 학습시킴으로써 강우분포특성을 고려한 침수예측을 통해 예측력을 높이고자 한다. 총 강우량만을 학습시킬 경우, 같은 지속시간에 같은 양의 강우가 내리더라도 고른 분포를 가진 강우에 의해서는 실제 침수는 작게 일어나므로 과대예측을, 전체 지속시간 중 특정 시간대에 편향된 분포를 가진 강우에 의해서는 실제 침수가 크게 일어나므로 과소예측을 하는 문제가 발생할 수 있다. 따라서 표준편차를 평균 강우량으로 나눈 값인 변동계수, 강우분포의 뾰족한 정도를 나타내는 첨도, 평균값에 대해 어느 방향으로 비대칭인지를 나타내는 왜도 값을 추가로 학습시킴으로써 시계열 강우자료 전체를 학습시키지 않고도 강우분포를 학습시키지 않았을 때 발생하는 과소·과대예측 문제를 해결할 수 있다. 또한 변동계수 대신 표준편차를 학습시키는 모형, 변동계수와 표준편차를 모두 학습시키지 않는 모형, 변동계수와 표준편차를 모두 학습시키는 모형과의 침수예측 결과 비교를 통해 표준편차와 변동계수 중 어떤 통계치를 학습시키는 것이 적합한지와 비슷한 통계치 자료를 모두 학습시켰을 때의 과적합 문제 등에 대한 결론를 얻을 수 있다.

  • PDF

Predictive model for the shear strength of concrete beams reinforced with longitudinal FRP bars

  • Alzabeebee, Saif;Dhahir, Moahmmed K.;Keawsawasvong, Suraparb
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.143-154
    • /
    • 2022
  • Corrosion of steel reinforcement is considered as the main cause of concrete structures deterioration, especially those under humid environmental conditions. Hence, fiber reinforced polymer (FRP) bars are being increasingly used as a replacement for conventional steel owing to their non-corrodible characteristics. However, predicting the shear strength of beams reinforced with FRP bars still challenging due to the lack of robust shear theory. Thus, this paper aims to develop an explicit data driven based model to predict the shear strength of FRP reinforced beams using multi-objective evolutionary polynomial regression analysis (MOGA-EPR) as data driven models learn the behavior from the input data without the need to employee a theory that aid the derivation, and thus they have an enhanced accuracy. This study also evaluates the accuracy of predictive models of shear strength of FRP reinforced concrete beams employed by different design codes by calculating and comparing the values of the mean absolute error (MAE), root mean square error (RMSE), mean (𝜇), standard deviation of the mean (𝜎), coefficient of determination (R2), and percentage of prediction within error range of ±20% (a20-index). Experimental database has been developed and employed in the model learning, validation, and accuracy examination. The statistical analysis illustrated the robustness of the developed model with MAE, RMSE, 𝜇, 𝜎, R2, and a20-index of 14.6, 20.8, 1.05, 0.27, 0.85, and 0.61, respectively for training data and 10.4, 14.1, 0.98, 0.25, 0.94, and 0.60, respectively for validation data. Furthermore, the developed model achieved much better predictions than the standard predictive models as it scored lower MAE, RMSE, and 𝜎, and higher R2 and a20-index. The new model can be used in future with confidence in optimized designs as its accuracy is higher than standard predictive models.

Does Brand Orientation Matter? An Empirical Study of Korean SMEs

  • Park, Sang IL;Kim, Mi Jeong
    • Asia Marketing Journal
    • /
    • v.14 no.4
    • /
    • pp.117-142
    • /
    • 2013
  • Brand orientation is a relatively new paradigm in marketing which was first introduced in the 1990s. Since then, an accumulating body of research has addressed the strategic importance of brand orientation. Although there is a growing body of literature on brand orientation, there have been no empirical studies examining the mediation effect of brand orientation on market orientation-performance relationship to date. Moreover, most studies on brand orientation have been carried out in the context of large enterprises. Hence, the aim of this research is to extend the literature and address market orientation, brand orientation, and firm performance against the backdrop of Korean SMEs. The authors empirically investigate the impact of market/brand orientation on organizational performance and the mediating role of brand orientation. They utilize 178 usable responses to test the four research hypotheses. The hypothesized model predicts that there is a positive association among market orientation, brand orientation, and firm performance. It is also expected that brand orientation mediates the relationship between market orientation and organizational performance. The statistical results based on PLS analysis confirm our prediction among the constructs in the research model. The empirical evidence provides significant theoretical and managerial implications for brand orientation among SMEs. The first theoretical implication is that we provide empirical evidence regarding the important role of brand orientation in explaining the multi-trait perspectives of strategic orientation. The second theoretical implication is that the concept of brand orientation can be empirically validated in the context of SMEs. In terms of managerial implications, managers of SMEs should attempt to build a brand-oriented corporate culture or mindset that places brand values and brand norms as the top priority among their company's tasks. In addition, managers should recognize that brand orientation is critical for SMEs as well as large enterprises. In the last section, the authors address limitations of the study and provide directions for further research.

  • PDF

Estimation of Physical Climate Risk for Private Companies (민간기업을 위한 물리적 기후리스크 추정 연구)

  • Yong-Sang Choi;Changhyun Yoo;Minjeong Kong;Minjeong Cho;Haesoo Jung;Yoon-Kyoung Lee;Seon Ki Park;Myoung-Hwan Ahn;Jaehak Hwang;Sung Ju Kim
    • Atmosphere
    • /
    • v.34 no.1
    • /
    • pp.1-21
    • /
    • 2024
  • Private companies are increasingly required to take more substantial actions on climate change. This study introduces the principle and cases of climate (physical) risk estimation for 11 private companies in Korea. Climate risk is defined as the product of three major determinants: hazard, exposure, and vulnerability. Hazard is the intensity or frequency of weather phenomena that can cause disasters. Vulnerability can be reflected in the function that explains the relationship between past weather records and loss records. The final climate risk is calculated by multiplying the function by the exposure, which is defined as the area or value of the target area exposed to the climate. Future climate risk is estimated by applying future exposure to estimated future hazard using climate model scenarios or statistical trends based on weather data. The estimated climate risks are developed into three types according to the demand of private companies: i) climate risk for financial portfolio management, ii) climate risk for port logistics management, iii) climate risk for supply chain management. We hope that this study will contribute to the establishment of the climate risk management system in the Korean industrial sector as a whole.

Development of MATLAB GUI-based Software for Performance Analysis of RNSS Navigation Message and WAD-RNSS Correction (지역 위성항법시스템 항법메시지 및 광역 보정정보 성능 분석을 위한 MATLAB GUI 기반 소프트웨어 개발)

  • Jaeuk Park;Bu-Gyeom Kim;Changdon Kee;Donguk Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.510-518
    • /
    • 2023
  • This paper introduces a MATLAB graphical user interface (GUI) based software for performance analysis of navigation message and wide area differential correction of regional navigation satellite system (RNSS). This software was developed to analyze satellite orbit/clock-related performance of navigation message and wide area differential correction simulating RNSS for regions near Korea based on different distributions of monitor and reference stations. As a result of software operation, navigation message and wide area differential correction are given as output in MATLAB file format. From the analysis of output, it was confirmed that valid navigation message and wide area differential correction could be generated from the results about statistical feature of orbit and clock prediction errors, cm-level fitting errors for navigation message parameters, and 81.9% enhancement in range error for wide area differential correction.

The effects of satisfaction with major, and dental hygiene professionalism on career preparation behavior of dental hygiene students (치위생(학)과 학생의 전공만족도, 치위생전문직관이 진로준비행동에 미치는 영향)

  • Ji-Hyoung Han;Min-Young Kim
    • Journal of Korean society of Dental Hygiene
    • /
    • v.23 no.5
    • /
    • pp.387-393
    • /
    • 2023
  • Objectives: This study was attempted in order to understand about the satisfaction with major and the dental hygiene professionalism in dental hygiene students and to grasp the factors affecting the career preparation behavior. Methods: The research subjects included 264 juniors and seniors who are attending dental hygiene department across Korea (three locations in Gyeonggi province, one locations in Daejeon, four locations in Jeolla province, and one locations in Daegu). Data were collected using the online questionnaire between March 6 to April 7, 2023. The chosen data analysis method included descriptive statistical analysis, t-test, one-way ANOVA, Pearson's correlation coefficient, and stepwise multiple linear regression. Results: The following average scores were obtained from those surveyed: 3.25 points concerning career preparation behavior, 3.83 points concerning the respondent's satisfaction with their major, and 3.45 points concerning dental hygiene professionalism. As for a difference in career preparation behavior according to general characteristics, a meaningful difference was shown in terms of gender, motivation for entering the field, and first desired employment. Aspects of career preparation behavior, satisfaction with one's major, and dental hygiene professionalism showed a significant correlation and were confirmed to explain the prediction of 29.1% of the variation in the regression model. Conclusions: For the sake of having an integrated understanding about career preparation behavior among dental hygiene students, there is a need to conduct repeated research on diverse variables and to inquire into a causal relationships between such variables.

Verification on stock return predictability of text in analyst reports (애널리스트 보고서 텍스트의 주가예측력에 대한 검증)

  • Young-Sun Lee;Akihiko Yamada;Cheol-Won Yang;Hohsuk Noh
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.5
    • /
    • pp.489-499
    • /
    • 2023
  • As sharing of analyst reports became widely available, reports generated by analysts have become a useful tool to reduce difference in financial information between market participants. The quantitative information of analyst reports has been used in many ways to predict stock returns. However, there are relatively few domestic studies on the prediction power of text information in analyst reports to predict stock returns. We test stock return predictability of text in analyst reports by creating variables representing the TONE from the text. To overcome the limitation of the linear-model-assumption-based approach, we use the random-forest-based F-test.