• Title/Summary/Keyword: statistical learning

Search Result 1,288, Processing Time 0.027 seconds

Implementation of reliable dynamic honeypot file creation system for ransomware attack detection (랜섬웨어 공격탐지를 위한 신뢰성 있는 동적 허니팟 파일 생성 시스템 구현)

  • Kyoung Wan Kug;Yeon Seung Ryu;Sam Beom Shin
    • Convergence Security Journal
    • /
    • v.23 no.2
    • /
    • pp.27-36
    • /
    • 2023
  • In recent years, ransomware attacks have become more organized and specialized, with the sophistication of attacks targeting specific individuals or organizations using tactics such as social engineering, spear phishing, and even machine learning, some operating as business models. In order to effectively respond to this, various researches and solutions are being developed and operated to detect and prevent attacks before they cause serious damage. In particular, honeypots can be used to minimize the risk of attack on IT systems and networks, as well as act as an early warning and advanced security monitoring tool, but in cases where ransomware does not have priority access to the decoy file, or bypasses it completely. has a disadvantage that effective ransomware response is limited. In this paper, this honeypot is optimized for the user environment to create a reliable real-time dynamic honeypot file, minimizing the possibility of an attacker bypassing the honeypot, and increasing the detection rate by preventing the attacker from recognizing that it is a honeypot file. To this end, four models, including a basic data collection model for dynamic honeypot generation, were designed (basic data collection model / user-defined model / sample statistical model / experience accumulation model), and their validity was verified.

Mediating Effect of Professional Identity on the Relationship between Job- and Organization- related Factors and Job Satisfaction among Social Workers in Senior Welfare Facilities (노인생활시설 사회복지사들의 직무 및 조직특성과 직무만족도의 관계에서 전문직업적 정체성의 매개효과)

  • Cha, Myeong Jin;Je, Seok Bong
    • 한국노년학
    • /
    • v.29 no.2
    • /
    • pp.669-682
    • /
    • 2009
  • The purpose of this study was to explore the role of professional identity as mediating variable in the relationship between job- and organization- related factors and job satisfaction. This study surveyed social workers who worked at 24 senior welfare facilities in Daegu·Gyeoungbuk province from Aug. 1. to Aug. 30. 2006. A total of 137 questionnaires were collected using on-site survey (response rate 76.7%). Statistical analyses were performed using SPSS 12.0 for Windows. Descriptive analysis and frequency analysis were performed on overall measurement items and hierarchical regression analysis was conducted to test the mediating effect of professional identity. The reliability of statements was acceptable since the coefficient alphas were > .70. Results of hierarchical regression showed that professional identity was verified as a partial mediator in the relationship between factors related with job and organization and job satisfaction. As the population ages, there will be an increasing need for professional social workers effectively to work with and help care for the elderly. This study highlighted that job- and organization- related factors, namely self-regulations and social supports, are significantly related with job satisfaction of social workers. Especially, such effect was more significantly apparent in high professional identity which is playing a partial mediator. This result implies that there is potential to change work environments of social workers ensuring a delegation of power and responsibility. Therefore, efforts should be made to improve the promotion system and connect social worker as servant with community through diverse service learning programs.

CNN Model for Prediction of Tensile Strength based on Pore Distribution Characteristics in Cement Paste (시멘트풀의 공극분포특성에 기반한 인장강도 예측 CNN 모델)

  • Sung-Wook Hong;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.339-346
    • /
    • 2023
  • The uncertainties of microstructural features affect the properties of materials. Numerous pores that are randomly distributed in materials make it difficult to predict the properties of the materials. The distribution of pores in cementitious materials has a great influence on their mechanical properties. Existing studies focus on analyzing the statistical relationship between pore distribution and material responses, and the correlation between them is not yet fully determined. In this study, the mechanical response of cementitious materials is predicted through an image-based data approach using a convolutional neural network (CNN), and the correlation between pore distribution and material response is analyzed. The dataset for machine learning consists of high-resolution micro-CT images and the properties (tensile strength) of cementitious materials. The microstructures are characterized, and the mechanical properties are evaluated through 2D direct tension simulations using the phase-field fracture model. The attributes of input images are analyzed to identify the spot with the greatest influence on the prediction of material response through CNN. The correlation between pore distribution characteristics and material response is analyzed by comparing the active regions during the CNN process and the pore distribution.

A Groundwater Potential Map for the Nakdonggang River Basin (낙동강권역의 지하수 산출 유망도 평가)

  • Soonyoung Yu;Jaehoon Jung;Jize Piao;Hee Sun Moon;Heejun Suk;Yongcheol Kim;Dong-Chan Koh;Kyung-Seok Ko;Hyoung-Chan Kim;Sang-Ho Moon;Jehyun Shin;Byoung Ohan Shim;Hanna Choi;Kyoochul Ha
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.6
    • /
    • pp.71-89
    • /
    • 2023
  • A groundwater potential map (GPM) was built for the Nakdonggang River Basin based on ten variables, including hydrogeologic unit, fault-line density, depth to groundwater, distance to surface water, lineament density, slope, stream drainage density, soil drainage, land cover, and annual rainfall. To integrate the thematic layers for GPM, the criteria were first weighted using the Analytic Hierarchical Process (AHP) and then overlaid using the Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) model. Finally, the groundwater potential was categorized into five classes (very high (VH), high (H), moderate (M), low (L), very low (VL)) and verified by examining the specific capacity of individual wells on each class. The wells in the area categorized as VH showed the highest median specific capacity (5.2 m3/day/m), while the wells with specific capacity < 1.39 m3/day/m were distributed in the areas categorized as L or VL. The accuracy of GPM generated in the work looked acceptable, although the specific capacity data were not enough to verify GPM in the studied large watershed. To create GPMs for the determination of high-yield well locations, the resolution and reliability of thematic maps should be improved. Criterion values for groundwater potential should be established when machine learning or statistical models are used in the GPM evaluation process.

Development of SVM-based Construction Project Document Classification Model to Derive Construction Risk (건설 리스크 도출을 위한 SVM 기반의 건설프로젝트 문서 분류 모델 개발)

  • Kang, Donguk;Cho, Mingeon;Cha, Gichun;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.841-849
    • /
    • 2023
  • Construction projects have risks due to various factors such as construction delays and construction accidents. Based on these construction risks, the method of calculating the construction period of the construction project is mainly made by subjective judgment that relies on supervisor experience. In addition, unreasonable shortening construction to meet construction project schedules delayed by construction delays and construction disasters causes negative consequences such as poor construction, and economic losses are caused by the absence of infrastructure due to delayed schedules. Data-based scientific approaches and statistical analysis are needed to solve the risks of such construction projects. Data collected in actual construction projects is stored in unstructured text, so to apply data-based risks, data pre-processing involves a lot of manpower and cost, so basic data through a data classification model using text mining is required. Therefore, in this study, a document-based data generation classification model for risk management was developed through a data classification model based on SVM (Support Vector Machine) by collecting construction project documents and utilizing text mining. Through quantitative analysis through future research results, it is expected that risk management will be possible by being used as efficient and objective basic data for construction project process management.

Very Short- and Long-Term Prediction Method for Solar Power (초 장단기 통합 태양광 발전량 예측 기법)

  • Mun Seop Yun;Se Ryung Lim;Han Seung Jang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1143-1150
    • /
    • 2023
  • The global climate crisis and the implementation of low-carbon policies have led to a growing interest in renewable energy and a growing number of related industries. Among them, solar power is attracting attention as a representative eco-friendly energy that does not deplete and does not emit pollutants or greenhouse gases. As a result, the supplement of solar power facility is increasing all over the world. However, solar power is easily affected by the environment such as geography and weather, so accurate solar power forecast is important for stable operation and efficient management. However, it is very hard to predict the exact amount of solar power using statistical methods. In addition, the conventional prediction methods have focused on only short- or long-term prediction, which causes to take long time to obtain various prediction models with different prediction horizons. Therefore, this study utilizes a many-to-many structure of a recurrent neural network (RNN) to integrate short-term and long-term predictions of solar power generation. We compare various RNN-based very short- and long-term prediction methods for solar power in terms of MSE and R2 values.

Field Perception Analysis on Policy Outcomes of Academic Libraries (국내 대학도서관 정책 성과에 대한 현장 인식 조사)

  • Jongwook Lee;Woojin Kang;Youngmi Jung
    • Journal of Korean Library and Information Science Society
    • /
    • v.54 no.4
    • /
    • pp.415-436
    • /
    • 2023
  • In this study, we aimed to examine the level of implementation of the second comprehensive plan for promoting academic libraries (2019-2023) by analyzing key statistics of academic libraries and gathering perceptions from library staff. We analyzed the changes in major statistical indicators of libraries over the past five years. Additionally, we surveyed library staff to understand their overall perceptions of the plan and their attitudes towards the 17 sub-tasks outlined in it. The analysis of 369 survey responses revealed several key findings. Firstly, most respondents comprehended the plan well and frequently utilized it for developing their libraries' development and implementation plans. Secondly, the IPA results indicated that regardless of the type of university, there should be a continuous focus on facility improvement, teaching-learning support, and expanding access to academic resources. Efforts to develop library policies and strengthen human and financial resources were identified as crucial. Thirdly, four-year universities particularly emphasized the importance of expanding access to international academic resources compared to junior colleges. Conversely, junior colleges perceived foundational skill-building programs and inclusive services as more significant than four-year universities. The application of the IPA diagonal model revealed that the performance levels of all sub-tasks were lower than their perceived importance levels, suggesting the need for strategies to enhance effectiveness in future comprehensive plan formulation.

Analysis of the Effectiveness of Big Data-Based Six Sigma Methodology: Focus on DX SS (빅데이터 기반 6시그마 방법론의 유효성 분석: DX SS를 중심으로)

  • Kim Jung Hyuk;Kim Yoon Ki
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2024
  • Over recent years, 6 Sigma has become a key methodology in manufacturing for quality improvement and cost reduction. However, challenges have arisen due to the difficulty in analyzing large-scale data generated by smart factories and its traditional, formal application. To address these limitations, a big data-based 6 Sigma approach has been developed, integrating the strengths of 6 Sigma and big data analysis, including statistical verification, mathematical optimization, interpretability, and machine learning. Despite its potential, the practical impact of this big data-based 6 Sigma on manufacturing processes and management performance has not been adequately verified, leading to its limited reliability and underutilization in practice. This study investigates the efficiency impact of DX SS, a big data-based 6 Sigma, on manufacturing processes, and identifies key success policies for its effective introduction and implementation in enterprises. The study highlights the importance of involving all executives and employees and researching key success policies, as demonstrated by cases where methodology implementation failed due to incorrect policies. This research aims to assist manufacturing companies in achieving successful outcomes by actively adopting and utilizing the methodologies presented.

Development of a Prediction Model for Personal Thermal Sensation on Logistic Regression Considering Urban Spatial Factors (도시공간적 요인을 고려한 로지스틱 회귀분석 기반 체감더위 예측 모형 개발)

  • Uk-Je SUNG;Hyeong-Min PARK;Jae-Yeon LIM;Yu-Jin SEO;Jeong-Min SON;Jin-Kyu MIN;Jeong-Hee EUM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.1
    • /
    • pp.81-98
    • /
    • 2024
  • This study analyzed the impact of urban spatial factors on the thermal environment. The personal thermal sensation was set as the unit of thermal environment to analyze its correlation with environmental factors. To collect data on personal thermal sensation, Living Lab was applied, allowing citizens to record their thermal sensation and measure the temperature. Based on the input points of the collected personal thermal sensation, nearby urban spatial elements were collected to build a dataset for statistical analysis. Logistic regression analysis was conducted to analyze the impact of each factor on personal thermal sensation. The analysis results indicate that the temperature is influenced by the surrounding spatial environment, showing a negative correlation with building height, greenery rate, and road rate, and a positive correlation with sky view factor. Furthermore, the road rate, sky view factor, and greenery rate, in that order, had a strong impact on perceived heat. The results of this study are expected to be utilized as basic data for assessing the thermal environment to prepare local thermal environment measures in response to climate change.

An Analysis of Arts Management-Related Studies' Trend in Korea using Topic Modeling and Semantic Network Analysis (토픽모델링과 의미연결망분석을 활용한 한국 예술경영 연구의 동향 변화 - 1988년부터 2017년까지 국내 학술논문 분석을 중심으로 -)

  • Hwang, SeoI;Park, Yang Woo
    • Korean Association of Arts Management
    • /
    • no.50
    • /
    • pp.5-31
    • /
    • 2019
  • The main purpose of this study was to use Deep Learning based Topic Modeling and Semantic Network Analysis to examine research trend of arts management-related papers in korea. For this purpose, research subjects such as 'The Journal of Cultural Policy', 'The Journal of Cultural Economics', 'The Journal of Culture Industry', 'The Journal of Arts Management', and 'The Journal of Human Content', which are the registered journal of the National Research Foundation of Korea directly or indirectly related to arts management field. From 1988 to 2017, a total of 2,110 domestic journals' signature, abstract, and keyword were analyzed. We tried Big Data analysis such as Topic Modeling and Semantic Network Analysis to examine changes in trends in arts management. The analysis program used open software R and standard statistical software SPSS. Based on the results of the analysis, the implications and limitations of the study and suggestions for future research were discussed. And the potential for development of convergent research such as Arts & Artificial Intelligence and Arts & Big Data.