• Title/Summary/Keyword: statistic tool

Search Result 63, Processing Time 0.026 seconds

Testing Homogeneity for Random Effects in Linear Mixed Model

  • Ahn, Chul H.
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.403-414
    • /
    • 2000
  • A diagnostic tool for testing homogeneity for random effects is proposed in unbalanced linear mixed model based on score statistic. The finite sample behavior of the test statistic is examined using Monte Carlo experiments examine the chi-square approximation of the test statistic under the null hypothesis.

  • PDF

Simulation Modeling of Profit Optimization and Output Analysis using R (R을 활용한 이윤 최적화 시뮬레이션 모델링 및 결과 분석)

  • Cho, Min-Ho;Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.8
    • /
    • pp.883-888
    • /
    • 2014
  • Simulation is now using in various area as an effective decision analysis tool in complex environment of today. But, There is a focus to the simulation model development and execution better than result analysis. This article will emphasis to the importance of result analysis apart from model development in simulation, and will use R package for profit optimization simulation. R has a various function in statistic analysis and data manipulation, graphic display. So this research can show the value of R as a tool for simulation.

Visual Query and Analysis Tool of the Moving Object Database System

  • Lee, J.H.;Lee, S.H.;Nam, K.W.;Park, J.H.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.455-457
    • /
    • 2003
  • Diverse researches are working moving objects. The most important activities in a moving object database system are query and analysis of spatio -temporal data providing decision-making and problem solving support. Traditional spatial database query language and tools are inappropriate of the real world entities. This paper presents a spatio-temporal query and analysis tool with visual environment. It provides effective, interactive and user-friendly as well as statistic analysis. The moving objects database system stores plentiful moving objects data and performs spatio-temporal and nonspatio-temporal queries.

  • PDF

Optimizing the maximum reported cluster size for normal-based spatial scan statistics

  • Yoo, Haerin;Jung, Inkyung
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.4
    • /
    • pp.373-383
    • /
    • 2018
  • The spatial scan statistic is a widely used method to detect spatial clusters. The method imposes a large number of scanning windows with pre-defined shapes and varying sizes on the entire study region. The likelihood ratio test statistic comparing inside versus outside each window is then calculated and the window with the maximum value of test statistic becomes the most likely cluster. The results of cluster detection respond sensitively to the shape and the maximum size of scanning windows. The shape of scanning window has been extensively studied; however, there has been relatively little attention on the maximum scanning window size (MSWS) or maximum reported cluster size (MRCS). The Gini coefficient has recently been proposed by Han et al. (International Journal of Health Geographics, 15, 27, 2016) as a powerful tool to determine the optimal value of MRCS for the Poisson-based spatial scan statistic. In this paper, we apply the Gini coefficient to normal-based spatial scan statistics. Through a simulation study, we evaluate the performance of the proposed method. We illustrate the method using a real data example of female colorectal cancer incidence rates in South Korea for the year 2009.

Identification of the out-of-control variable based on Hotelling's T2 statistic (호텔링 T2의 이상신호 원인 식별)

  • Lee, Sungim
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.811-823
    • /
    • 2018
  • Multivariate control chart based on Hotelling's $T^2$ statistic is a powerful tool in statistical process control for identifying an out-of-control process. It is used to monitor multiple process characteristics simultaneously. Detection of the out-of-control signal with the $T^2$ chart indicates mean vector shifts. However, these multivariate signals make it difficult to interpret the cause of the out-of-control signal. In this paper, we review methods of signal interpretation based on the Mason, Young, and Tracy (MYT) decomposition of the $T^2$ statistic. We also provide an example on how to implement it using R software and demonstrate simulation studies for comparing the performance of these methods.

Design of an Effective Human Sensibility Ergonomic Interior Design Analysis Tool (효율적인 감성공학적 인테리어 디자인 분석 도구의 설계)

  • Seo, Hyung-Soo
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.2 s.61
    • /
    • pp.314-321
    • /
    • 2007
  • The statistical method of human sensibility ergonomics is widely used for analyzing interior design because it has standard processes and it can help to get quantifiable results. However applying this method demands repeated intense work and great time and effort is required. In this study, a tool applying Web and virtual reality techniques for statistical human sensibility ergonomic interior design analysis is proposed and the key parts of the tool including database and interface are implemented. The database contains the sensibility adjective table and the physical interior design factor table for analyzing the relationship between human sense and physical design factors. Interface of the tool is implemented using Web technologies, so testers can evaluate interior design samples via standard Web browsers. The 3D control which is an important component of the interface is also implemented. Employing the suggested tool can reduce effort and time for evaluating human sense in Interior design field.

Analyzing Survival Data as Binary Outcomes with Logistic Regression

  • Lim, Jo-Han;Lee, Kyeong-Eun;Hahn, Kyu-S.;Park, Kun-Woo
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.1
    • /
    • pp.117-126
    • /
    • 2010
  • Clinical researchers often analyze survival data as binary outcomes using the logistic regression method. This paper examines the information loss resulting from analyzing survival time as binary outcomes. We first demonstrate that, under the proportional hazard assumption, this binary discretization does result in a significant information loss. Second, when fitting a logistic model to survival time data, researchers inadvertently use the maximal statistic. We implement a numerical study to examine the properties of the reference distribution for this statistic, finally, we show that the logistic regression method can still be a useful tool for analyzing survival data in particular when the proportional hazard assumption is questionable.

EWMA Control Chart for Monitoring a Process Correlation Coefficient (상관계수의 변동을 탐지하기 위한 EWMA 관리도)

  • 한정혜;조중재
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.1
    • /
    • pp.108-125
    • /
    • 1998
  • The EWMA(Exponentially Weighted Moving Average) has recently received a great deal of attention in the quality control literature as a process monitoring tool on the shop floor of manufacturing industires, since it is easy to plot, to interpret, and its control limits are easy to obtain. Most a, pp.ications of the EWMA for process monitoring have concentrated on the problem of detecting shifts of a process mean and a process standard deviation with ARL(Average Run Length) properties. But there may be the necessity of controlling linearity on product quality such as the correlation coefficient to the process operator. Control managers may want to protect the increase of a process correlation coefficient value, such as 0, between two variables of interest. However, there are few studies concerned on this part. Therefore, we propose EWMA models for a process correlation coefficient using two transformed statistics, T-statistic and (Fisher's) Z-statistic. We also present some results of simulation by SAS/IML and compare two models.

  • PDF

Detecting Nonlinearity of Hydrologic Time Series by BDS Statistic and DVS Algorithm (BDS 통계와 DVS 알고리즘을 이용한 수문시계열의 비선형성 분석)

  • Choi, Kang Soo;Kyoung, Min Soo;Kim, Soo Jun;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.163-171
    • /
    • 2009
  • Classical linear models have been generally used to analyze and forecast hydrologic time series. However, there is growing evidence of nonlinear structure in natural phenomena and hydrologic time series associated with their patterns and fluctuations. Therefore, the classical linear techniques for time series analysis and forecasting may not be appropriate for nonlinear processes. In recent, the BDS (Brock-Dechert-Scheinkman) statistic instead of conventional techniques has been used for detecting nonlinearity of time series. The BDS statistic was derived from the statistical properties of the correlation integral which is used to analyze chaotic system and has been effectively used for distinguishing nonlinear structure in dynamic system from random structures. DVS (Deterministic Versus Stochastic) algorithm has been used for detecting chaos and stochastic systems and for forecasting of chaotic system. This study showed the DVS algorithm can be also used for detecting nonlinearity of the time series. In this study, the stochastic and hydrologic time series are analyzed to detect their nonlinearity. The linear and nonlinear stochastic time series generated from ARMA and TAR (Threshold Auto Regressive) models, a daily streamflow at St. Johns river near Cocoa, Florida, USA and Great Salt Lake Volume (GSL) data, Utah, USA are analyzed, daily inflow series of Soyang dam and the results are compared. The results showed the BDS statistic is a powerful tool for distinguishing between linearity and nonlinearity of the time series and DVS plot can be also effectively used for distinguishing the nonlinearity of the time series.

Bearing fault detection through multiscale wavelet scalogram-based SPC

  • Jung, Uk;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.377-395
    • /
    • 2014
  • Vibration-based fault detection and condition monitoring of rotating machinery, using statistical process control (SPC) combined with statistical pattern recognition methodology, has been widely investigated by many researchers. In particular, the discrete wavelet transform (DWT) is considered as a powerful tool for feature extraction in detecting fault on rotating machinery. Although DWT significantly reduces the dimensionality of the data, the number of retained wavelet features can still be significantly large. Then, the use of standard multivariate SPC techniques is not advised, because the sample covariance matrix is likely to be singular, so that the common multivariate statistics cannot be calculated. Even though many feature-based SPC methods have been introduced to tackle this deficiency, most methods require a parametric distributional assumption that restricts their feasibility to specific problems of process control, and thus limit their application. This study proposes a nonparametric multivariate control chart method, based on multiscale wavelet scalogram (MWS) features, that overcomes the limitation posed by the parametric assumption in existing SPC methods. The presented approach takes advantage of multi-resolution analysis using DWT, and obtains MWS features with significantly low dimensionality. We calculate Hotelling's $T^2$-type monitoring statistic using MWS, which has enough damage-discrimination ability. A bootstrap approach is used to determine the upper control limit of the monitoring statistic, without any distributional assumption. Numerical simulations demonstrate the performance of the proposed control charting method, under various damage-level scenarios for a bearing system.