• Title/Summary/Keyword: statistic module

Search Result 12, Processing Time 0.017 seconds

A spectrum based evaluation algorithm for micro scale weather analysis module with application to time series cluster analysis (스펙트럼분석 기반의 미기상해석모듈 평가알고리즘 제안 및 시계열 군집분석에의 응용)

  • Kim, Hea-Jung;Kwak, Hwa-Ryun;Kim, Yu-Na;Choi, Young-Jean
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.41-53
    • /
    • 2015
  • In meteorological field, many researchers have tried to develop micro scale weather analysis modules for providing real-time weather information service in the metropolitan area. This effort enables us to cope with various economic and social harms coming from serious change in the micro meteorology of a metropolitan area due to rapid urbanization such as quantitative expansions in its urban activity, growth of population, and building concentration. The accuracy of the micro scale weather analysis modules (MSWAM) directly related to usefulness and quality of the real-time weather information service in the metropolitan area. This paper design a evaluation system along with verification tools that sufficiently accommodate spatio-temporal characteristics of the outputs of the MSWAM. For this we proposes a test for the equality of mean vectors of the output series of the MSWAM and corresponding observed time series by using a spectral analysis technique. As a byproduct, a time series cluster analysis method, using a function of the test statistic as the distance measure, is developed. A real data application is given to demonstrate the utility of the method.

The Sensitivity Analysis for Customer Feedback on Social Media (소셜 미디어 상 고객피드백을 위한 감성분석)

  • Song, Eun-Jee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.780-786
    • /
    • 2015
  • Social media, such as Social Network Service include a lot of spontaneous opinions from customers, so recent companies collect and analyze information about customer feedback by using the system that analyzes Big Data on social media in order to efficiently operate businesses. However, it is difficult to analyze data collected from online sites accurately with existing morpheme analyzer because those data have spacing errors and spelling errors. In addition, many online sentences are short and do not include enough meanings which will be selected, so established meaning selection methods, such as mutual information, chi-square statistic are not able to practice Emotional Classification. In order to solve such problems, this paper suggests a module that can revise the meanings by using initial consonants/vowels and phase pattern dictionary and meaning selection method that uses priority of word class in a sentence. On the basis of word class extracted by morpheme analyzer, these new mechanisms would separate and analyze predicate and substantive, establish properties Database which is subordinate to relevant word class, and extract positive/negative emotions by using accumulated properties Database.