• Title/Summary/Keyword: static modulus of elasticity

Search Result 96, Processing Time 0.027 seconds

Nondestructive Evaluation of Strength Performance for Heat-Treated Wood Using Impact Hammer & Transducer

  • Won, Kyung-Rok;Chong, Song-Ho;Hong, Nam-Euy;Kang, Sang-Uk;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.466-473
    • /
    • 2013
  • Nondestructive evaluation (NDE) technique method using a resonance frequency mode was carried out for heat-treated wood under different conditions. The effect of heat treatment on the bending strength and NDE technique using the resonance frequency by impact hammer and force transducer mode for Korean paulownia, Pinus densiflora, Lidiodendron tulipifera and Betula costata were measured. The heat treatment temperature has been investigated at $175^{\circ}C$ and $200^{\circ}C$, respectively. There were a close relationship of dynamic modulus of elasticity and static bending modulus of elasticity to MOR. In all conditions, It was found that there were a high correlation at 1% level between dynamic modulus of elasticity and MOR, and static modulus of elasticity and MOR. However, the result indicated that correlation coefficient is higher in dynamic modulus of elasticity to MOR than that in static modulus of elasticity to MOR. Therefore, the dynamic modulus of elasticity using resonance frequency by impact hammer mode is more useful as a nondestructive evaluation method for predicting the MOR of heat-treated wood under different temperature and species conditions.

Nondestructive Bending Strength Evaluation of Woodceramics Made from Woody Part of Broussonetia Kazinoki Sieb. - Effect of Resin Impregnation Ratio -

  • Byeon, Hee-Seop;Kim, Jae-Min;Won, Kyung-Rok;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.398-405
    • /
    • 2011
  • Nondestructive evaluation (NDE) technique method using a resonance frequency mode was carried out for woodceramics made by different phenol resin impregnation ratios (40, 50, 60, 70%) for Broussonetia Kazinoki Sieb. Dynamic modulus of elasticity increased with increasing resin impregnation ratios. There was a close relationship between dynamic modulus of elasticity and static bending modulus of elasticity and between dynamic modulus of elasticity and MOR and between static bending modulus of elasticity and MOR. Therefore, the dynamic modulus of elasticity using resonance frequency mode is useful as a nondestructive evaluation method for predicting the MOR of woodceramics made by different impregnation ratios.

Evaluation of Static Bending Properties for Some Domestic Softwoods and Tropical Hardwoods Using Sonic Stress Wave Measurements (응력파(應力波) 측정(測定)에 의(依)한 수종(數種)의 국산(國産) 침엽수재(針葉樹材) 및 열대(熱帶) 활엽수재(闊葉樹材)의 휨성질(性質) 평가(評價))

  • Lee, Do-Sik;Jo, Jae-Sung;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.8-14
    • /
    • 1997
  • Stress wave velocity, wave impedance, and stress wave elasticity of small, clear bending specimens of five domestic softwoods (Pinus densiflora, Pinus koraiensis, Chamaecyparis obtusa, Cryptomeria japonica, and Larix leptolepis) and four tropical hardwoods(Kempas, Malas, Taun, and Terminalia) were correlated with static bending modulus of elasticity(MOE) and modulus of rupture(MOR). The degree of correlation between stress wave parameters and static bending properties was dependent on wood species tested. Stress wave elasticity and wave impedance were better predictors for static bending properties than stress wave velocity for each species individually and for softwood or hardwood species taken as a group, even though elasticity and impedance were nearly equally correlated with static bending properties apparently. Based upon the correlation coefficient between stress wave parameters and static properties, stress wave elasticity and wave impedance were found as stress wave parameters which can be used for the purpose of the reliable and successful prediction of bending properties. The degree of correlation between static MOE and MOR was also different according to wood species tested. Static MOE was nearly as well correlated with MOR as was stress wave elasticity. The results of this research are encouraging and can be considered as a basis for further work using full-size lumber. From the results of this study, it was concluded that stress wave measurements could provide useful predictions of static bending properties and was a feasible method for machine stress grading of domestic softwoods and tropical hardwoods tested in this study.

  • PDF

Dynamic MOE and Internal Friction of Compression Woods in Pinus densiflora (소나무 압축응력재(壓縮應力材)의 동(動) 탄성율(彈性率)과 내부마찰(內部摩擦))

  • Hong, Byung-Wha;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.32-36
    • /
    • 1995
  • A study was conducted to evaluate the dynamic mechanical properties (modulus of elasticity, resonant frequency and interanal friction) of compression wood in Pinus densiflora. Vibration method was used for estimation of dynamic modulus of elasticity and the values were compared to those of static bending modulus of elasticity. The results obtained are as follows: 1. The dynamic modulus of elasticity of compression wood decreased, whereas that of normal wood increased, with increasing specific gravity. 2. The resonant frequency of compression wood decreased, whereas that of normal wood increased, with increasing specific gravity. 3. The internal friction of compression wood increased with increasing specific gravity. 4. The correlation coefficients between dynamic and static moduli of elasticity in compression and normal woods were high.

  • PDF

Nondestructive Bending Strength Evaluation of Ceramics Made from Miscanthus sinensis var. purpurascens Particle Boards - Effect of Resin Impregnation Ratio -

  • Byeon, Hee-Seop;Won, Kyung-Rok;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.130-137
    • /
    • 2014
  • Nondestructive evaluation (NDE) method by using a resonance frequency mode was carried out for ceramics made from particle boards with different phenol resin impregnation ratios (30, 40, 50, 60%) at carbonizing temperature of $800^{\circ}C$. The material for ceramics was Miscanthus sinensis var. purpurascens board. Dynamic modulus of elasticity increased with increasing impregnation ratio. There was a close relationship of dynamic modulus of elasticity and static bending modulus of elasticity to modulus of rupture (MOR). However, the result indicated that correlation coefficient is higher in dynamic modulus of elasticity to MOR than that in static modulus of elasticity to MOR. Therefore, the dynamic modulus of elasticity using resonance frequency by free vibration mode is more useful as a nondestructive evaluation method for predicting the MOR of ceramics made from Miscanthus sinensis var. purpurascens particle boards by different phenol resin impregnation ratios.

Mechanical Performances of Boards Made from Carbonized Rice Husk and Sawdust: The Effect of Resin and Sawdust Addition Ratio (왕겨숯과 톱밥을 이용하여 제조한 보드의 역학적 성능: 수지 및 톱밥첨가량의 영향)

  • HWANG, Jung-Woo;OH, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.696-709
    • /
    • 2020
  • A board was manufactured for each resin and sawdust addition using the chaff made by carbonizing the chaff charcoal, an agricultural by-product that emerge during the rice pounding process, and sawdust. And effects of the additions of resin and sawdust on coefficients of dynamic and static modulus of elasticity, modulus of rupture, as well as the relationship between the dynamic modulus of elasticity, statis modulus of elasticity, and modulus of rupture were investigated. As phenol resin addition of chaff charcoal-sawdust compound board increases to 10~25%, the bending performance has increased. This suggests that resin addition largely effects the bending performance. Although the bending performance was gradually increased with the increase in sawdust addition, since the coefficients of determination (R2) between the sawdust addition with the coefficients of dynamic, static modulus of elasticity, and modulus of rupture were 0.4012, 0.0809, and 0.1971, respectively. Thus, it showed a relatively lower correlation, and the effect of sawdust on bending performance was small. Since a high correlation was confirmed between dynamic and static modulus of elasticity, and modulus of rupture of chaff charcoal-sawdust compound board, it was confirmed that prediction of static modulus of elasticity and modulus of rupture can be made in a nondestructive way from the dynamic modulus of elasticity.

Prediction and Application of the Dynamic Modulus of Elasticity of Concrete Using the Wavelet Analysis (웨이블릿 해석을 이용한 콘크리트의 동탄성계수 추정 및 응용)

  • Jung, Beom-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.843-850
    • /
    • 2010
  • The dynamic modulus of elasticity of concrete can be determined nondestructively using impact echo test as prescribed in KS F 2437. The fundamental longitudinal frequency of the concrete cylinders with free-free boundary condition was estimated by the wavelet transform theory. The advantage of the wavelet transform over either a pure spectral or temporal decomposition of the signal is that the features of the pertinent signals can be characterized in the time-frequency plane. For the concrete mix design utilized in this study, no significant difference between the dynamic and the static moduli of elasticity was observed. This was contrary to the perceived general notion of having the dynamic modulus considerably higher than the static modulus. It has been shown that the modulus from static and dynamic by impact echo test are comparable to each other fairly well, when the effect of strain level was properly taken into account. In this experimental test, it was shown that the dynamic modulus is approximately equal to the tangent modulus at $1{\times}10^{-4}$ strain level.

Nondestructive Bending Strength Evaluation of Miscanthus sinensis var. purpurascens Ceramics Made from Different Carbonizing Temperatures (탄화온도별로 제조된 거대억새 세라믹의 비파괴 휨강도 평가)

  • Won, Kyung-Rok;Oh, Seung-Won;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.723-731
    • /
    • 2014
  • Nondestructive evaluation (NDE) technique method using a resonance frequency mode was carried out for ceramics made by different carbonizing temperatures (600, 800, 1000, $1200^{\circ}C$) after impregnating the phenol resin with Miscanthus sinensis var. purpurascen particle boards. Dynamic modulus of elasticity increased with increasing carbonizing temperature. There were a close relationship of dynamic modulus of elasticity and static bending modulus of elasticity to modulus of rupture (MOR). However, the result indicated that correlation coefficient was higher in dynamic modulus of elasticity to MOR than that in static modulus of elasticity to MOR. Therefore, the dynamic modulus of elasticity using resonance frequency by free vibration mode is more useful as a nondestructive evaluation method for predicting the MOR of ceramics made by different carbonizing temperature for Miscanthus sinensis var. purpurascens particle boards.

Effect of Mix Ingredients on Modulus of Elasticity of High-Strength Concrete (고강도 콘크리트의 탄성계수에 미치는 배합재료의 영향평가)

  • 장일영;박훈규;이승훈;김규동
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.67-75
    • /
    • 2002
  • For the design of concrete structures in the serviceability limit state, the uniaxial static modulus of elasticity may be a most important parameter. In particular, this may be so just for a deflection control of the structure. Even in new concrete codes, however, the elastic modulus is normally presented on the form of general empirical relationships with the compressive strength and density of concrete. Normally, there is a large uncertainty associated with the general equations obtained by regression. Thus, in a typical plot of static modulus of elasticity vs. compressive strength, a large scatter can be observed at same strength. The aim of this study is to present the method for obtain the maximum modulus of elasticity at same compressive strength. In the present paper report the effects of mix ingredients on the modulus of elasticity of high-strength concrete. The test of 284 cylinder specimens arc conducted for type I with 11 % replacement of fly-ash cement concretes. Different water-hinder ratio, amounts of water and coarse aggregate as variables were investigated. And also analyzed it statistically by using SAS.

Engineering Properties of Permeable Polymer Concrete With Stone Dust and Fly Ash (석분과 플라이 애쉬를 혼입한 투수용 폴리머 콘크리트의 공학적 성질)

  • 성찬용;정현정
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.4
    • /
    • pp.147-154
    • /
    • 1996
  • This study wag performed to evaluate the engineering properties of permeable polymer concrete with stone dust and fly ash and unsaturated polyester resin. The following conclusions were drawn. 1. The highest strength was achieved by stone dust filled permeable polymer concrete, it was increased 17% by compressive strength, 188% by bending strength than that of the normal cement concrete, respectively. 2. The water permeability was in the range of 3.O76~4.152${\ell}/ cm{^2}/h$, and it was largely dependent upon the mix design. These concrete can be used to the structures which need water permeability. 3. The static modulus of elasticity was in the range of $1.15{\times} 10^5kg/cm^2$, which was approximately 53 56% of that of the normal cement concrete. 4. The poisson's number of permeable polymer concrete was in the range of 5.106~5.833, which was less than that of the normal cement concrete. 5. The dynamic modulus of elasticity was in the range of $1.29{\times} 10^5~1.5{\times} 10^5 kg/cm^2$, which was approximately less compared to that of the normal cement concrete. Stone dust filled permeable polymer concrete was showed higher dynamic modulus. The dynamic modulus of elasticity were increased approximately 7~13% than that of the static modulus. 6. The compressive strength, bending strength, elastic modulus, poisson's ratio, longitudinal strain and horizontal strain were decreased with the increase of poisson's number and water permeability at those concrete.

  • PDF