• Title/Summary/Keyword: static enquiry

Search Result 2, Processing Time 0.015 seconds

J. J. Schwab's life and His Ideas of Science Education (슈왑의 생애와 과학교육 사상)

  • Song, Jin-Woong
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.7
    • /
    • pp.856-869
    • /
    • 2006
  • J. J. Schwab is usually considered as the founder of the concept of scientific enquiry, perhaps the most important key word of science education of the 20th century. Mainly through the method of literature review, this study reappraises Schwab's life as a science educator as well as a curriculum scholar, and his ideas concerning several important issues about science and science education. Like other eminent science educators, before the 1950s, who were originally talented scientists but later became engaged in educational activities, Schwab were trained and known as a genetic scientist, but later he concentrated on university reform, curriculum studies and science education. His academic interest was very diverse across different disciplines, from biology and science in general to history, philosophy and education. The essence of his theory of scientific enquiry was 'to teach science as science', and the best way to do it was 'to teach science as enquiry'. With enquiry, however, he tried to deliver some important but differentiated meanings, for example by distinguishing 'science as enquiry' and 'teaching as enquiry', and 'static enquiry' and 'fluid enquiry'. Scientific enquiry was the core concept upon which many of his ideas concerning science education and education in general were based, such as the diversity of science, textbooks, curriculum and roles of teachers. In summary, Schwab can be characterized as a rational reformist of science education, who tried to identify the very nature and goals of the discipline and to bring its substantial changes with concrete and practical guidelines. Nevertheless, some of his ideas, like the diversity of science and conceptual invention, have been handed down by his followers frequently with considerable distortion.

Dynamic characteristics and fatigue damage prediction of FRP strengthened marine riser

  • Islam, A.B.M. Saiful
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.21-32
    • /
    • 2018
  • Due to the escalation in hydrocarbon consumption, the offshore industry is now looking for advanced technology to be employed for deep sea exploration. Riser system is an integral part of floating structure used for such oil and gas extraction from deep water offering a system of drill twines and production tubing to spread the exploration well towards the ocean bed. Thus, the marine risers need to be precisely employed. The incorporation of the strengthening material, fiber reinforced polymer (FRP) for deep and ultra-deep water riser has drawn extensive curiosity in offshore engineering as it might offer potential weight savings and improved durability. The design for FRP strengthening involves the local design for critical loads along with the global analysis under all possible nonlinearities and imposed loadings such as platform motion, gravity, buoyancy, wave force, hydrostatic pressure, current etc. for computing and evaluating critical situations. Finite element package, ABAQUS/AQUA is the competent tool to analyze the static and dynamic responses under the offshore hydrodynamic loads. The necessities in design and operating conditions are studied. The study includes describing the methodology, procedure of analysis and the local design of composite riser. The responses and fatigue damage characteristics of the risers are explored for the effects of FRP strengthening. A detail assessment on the technical expansion of strengthening riser has been outlined comprising the inquiry on its behavior. The enquiry exemplifies the strengthening of riser as very potential idea and suitable in marine structures to explore oil and gas in deep sea.