• Title/Summary/Keyword: static correction

Search Result 200, Processing Time 0.027 seconds

An efficient partial mixed finite element model for static and free vibration analyses of FGM plates rested on two-parameter elastic foundations

  • Lezgy-Nazargah, M.;Meshkani, Z.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.665-676
    • /
    • 2018
  • In this study, a four-node quadrilateral partial mixed plate element with low degrees of freedom (dofs) is developed for static and free vibration analysis of functionally graded material (FGM) plates rested on Winkler-Pasternak elastic foundations. The formulation of the presented finite element model is based on a parametrized mixed variational principle which is developed recently by the first author. The presented finite element model considers the effects of shear deformations and normal flexibility of the FGM plates without using any shear correction factor. It also fulfills the boundary conditions of the transverse shear and normal stresses on the top and bottom surfaces of the plate. Beside these capabilities, the number of unknown field variables of the plate is only six. The presented partial mixed finite element model has been validated through comparison with the results of the three-dimensional (3D) theory of elasticity and the results obtained from the classical and high-order plate theories available in the open literature.

Static and free vibration behavior of functionally graded sandwich plates using a simple higher order shear deformation theory

  • Zouatnia, Nafissa;Hadji, Lazreg
    • Advances in materials Research
    • /
    • v.8 no.4
    • /
    • pp.313-335
    • /
    • 2019
  • The objective of the present paper is to investigate the bending and free vibration behavior of functionally graded material (FGM) sandwich rectangular plates using an efficient and simple higher order shear deformation theory. Unlike other theories, there are only four unknown functions involved, as compared to five in other shear deformation theories. The most interesting feature of this theory is that it does not require the shear correction factor. Two common types of FGM sandwich plates are considered, namely, the sandwich with the FGM facesheet and the homogeneous core and the sandwich with the homogeneous facesheet and the FGM core. The equation of motion for the FGM sandwich plates is obtained based on Hamilton's principle. The closed form solutions are obtained by using the Navier technique. A static and free vibration frequency is given for different material properties. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Analytical solution for bending analysis of functionally graded beam

  • Sallai, Benoumrane;Hadji, Lazreg;Daouadji, T. Hassaine;Adda Bedia, E.A.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.829-841
    • /
    • 2015
  • In this paper, a refined exponential shear deformation beam theory is developed for bending analysis of functionally graded beams. The theory account for parabolic variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Contrary to the others refined theories elaborated, where the stretching effect is neglected, in the current investigation this so-called "stretching effect" is taken into consideration. The material properties of the functionally graded beam are assumed to vary according to power law distribution of the volume fraction of the constituents. Based on the present shear deformation beam theory, the equilibrium equations are derived from the principle of virtual displacements. Analytical solutions for static are obtained. Numerical examples are presented to verify the accuracy of the present theory.

Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams

  • Rahmani, O.;Refaeinejad, V.;Hosseini, S.A.H.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.339-350
    • /
    • 2017
  • In this paper, various nonlocal higher-order shear deformation beam theories that consider the size dependent effects in Functionally Graded Material (FGM) beam are examined. The presented theories fulfill the zero traction boundary conditions on the top and bottom surface of the beam and a shear correction factor is not required. Hamilton's principle is used to derive equation of motion as well as related boundary condition. The Navier solution is applied to solve the simply supported boundary conditions and exact formulas are proposed for the bending and static buckling. A parametric study is also included to investigate the effect of gradient index, length scale parameter and length-to-thickness ratio (aspect ratio) on the bending and the static buckling characteristics of FG nanobeams.

Fast Converging Correction Current for the Physical Optics Edge Diffraction by a dielectric Wedge (유전체 쐐기에 의한 물리광학해를 수정하기 위한 새 로운 급수)

  • 전재영;서종화;나정웅
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.877-880
    • /
    • 1999
  • A rigorous formulation is suggested〔l,2,3〕 in solving the scattering of plane waves by a dielectric wedge. Correcting surface currents are expanded in a Neumann series of fractional orders to meet the edge condition of static limit〔4〕. For the better converging series, the modified Neumann series satisfying the static limit edge condition and the radiation condition are suggested here for the surface currents having two different wave numbers of air and dielectric〔4〕. This representation gives accurate solutions over the whole region including the grazing incidence of the plane waves upon the dielectric wedge of large permittivities.

  • PDF

Static bending and free vibration of FGM beam using an exponential shear deformation theory

  • Hadji, L.;Khelifa, Z.;Daouadji, T.H.;Bedia, E.A.
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.99-114
    • /
    • 2015
  • In this paper, a refined exponential shear deformation beam theory is developed for bending analysis of functionally graded beams. The theory account for parabolic variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Contrary to the others refined theories elaborated, where the stretching effect is neglected, in the current investigation this so-called "stretching effect" is taken into consideration. The material properties of the functionally graded beam are assumed to vary according to power law distribution of the volume fraction of the constituents. Based on the present shear deformation beam theory, the equations of motion are derived from Hamilton's principle. Analytical solutions for static are obtained. Numerical examples are presented to verify the accuracy of the present theory.

A refined nonlocal hyperbolic shear deformation beam model for bending and dynamic analysis of nanoscale beams

  • Bensaid, Ismail
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.113-126
    • /
    • 2017
  • This paper proposes a new nonlocal higher-order hyperbolic shear deformation beam theory (HSBT) for the static bending and vibration of nanoscale-beams. Eringen's nonlocal elasticity theory is incorporated, in order to capture small size effects. In the present model, the transverse shear stresses account for a hyperbolic distribution and satisfy the free-traction boundary conditions on the upper and bottom surfaces of the nanobeams without using shear correction factor. Employing Hamilton's principle, the nonlocal equations of motion are derived. The governing equations are solved analytically for the edges of the beam are simply supported, and the obtained results are compared, as possible, with the available solutions found in the literature. Furthermore, the influences of nonlocal coefficient, slenderness ratio on the static bending and dynamic responses of the nanobeam are examined.

The survey on foot health of a primary school child (초등학교 5학년 어린이의 족부 건강에 대한 조사 연구)

  • Lim, Ho-Yong;Lim, Jin-Taek
    • Journal of Korean Physical Therapy Science
    • /
    • v.12 no.3
    • /
    • pp.35-45
    • /
    • 2005
  • The purpose of this study was to measure the static foot pressure distribution of children between forefoot and rearfoot, and the percentage of static pressure were measured from 1256 normal children in a primary school by the TPScan(Triple Pod Scan) systemCommercial system). The measurement were performed while standing with their comfortable state using the TPScan system. The static pressure distribution between forefoot and rearfoot was analyzed by paired t-test. The results were as follows: 1. The Pes cavus and Pes planus of students was 4.936%. 2. The Pes cavus were 42 children(3.343%) and Pes planus was 20 children(1.592%). 3. The Pes planus were seen in 42 of 1256 children with Grade I in 11 feet (26.2%), Grade II in 24(57.1%), Grade III in 6(57.1%), Grade IV in zero. 4. Pes planus and Pes cavus were significantly difference in foot pressure between forefoot and rearfoot(P<0.05). The future study needs detailed research and comparison with various variance between theses before and after correction.

  • PDF

Static Characteristics of a Moving-Coil-Type Linear Motor in Consideration of Interaction between PM and Armature Field (영구자석 계자와 전기자 자속의 상호작용 효과를 고려한 가동코일형 리니어모터의 정특성)

  • Jang, Seok-Myeong;Jeong, Sang-Seop;Park, Hui-Chang;Mun, Seok-Jun;Park, Chan-Il;Jeong, Tae-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.1
    • /
    • pp.19-26
    • /
    • 1999
  • A moving-coil-type linear motor, designed and fabricated, is consisted of the NdFeB permanent magnets with high specific energy as the stator, a coil-wrapped nonmagnetic hollow rectangular structure and an iron core as a pathway for magnetic flux. The interaction between permanent magmet and armature fie1d, so called "push/pull effect", is to shift the airgap flux density variation due to the magnet alone by a certain amount. Thrust therefore is shift downward or upward. The push/pull effect was presented through the FEM analysis and the static tests. We compared the thrust obtained through the FEM analysis with the static tests. Finally, we present the linearity and correction coefficients of the thrust in consideration of the push/pull effects.l effects.

  • PDF

Dynamic Model Development and Simulation of Crawler Type Excavator (크롤러형 굴삭기의 동역학적 모델 개발 및 시뮬레이션)

  • Kwon, Soon-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.642-651
    • /
    • 2009
  • The history of excavator design is not long enough which still causes most of the design considerations to be focused on static analysis or simple functional improvement based on static analysis. However, the real forces experiencing on each component of excavator are highly transient and impulsive. Therefore, the prediction and the evaluation of the movement of the excavator by dynamic load in the early design stage through the dynamic transient analysis of the excavator and ensuring of design technique plays an importance role to reduce development-cost, shorten product-deliver, decrease vehicle-weight and optimize the system design. In this paper, Commercial software DADS and ANSYS help to develop the track model of the crawler type excavator, and to evaluate the performance and the dynamic characteristics of excavator with various simulations. For that reason, the track of crawler type excavator is modelled with DADS Track Vehicle Superelement, and the reaction forces on the track rollers were predicted through the driving simulation. Also, the upper frame and cabin vibration characteristics, at the low RPM idle state, were evaluated with engine rigid body modelling. And flexibility body effects were considered to determine the more accurate joint reaction forces and accelerations under the upper frame swing motion.

  • PDF