• Title/Summary/Keyword: static approach

Search Result 922, Processing Time 0.03 seconds

Crime hotspot prediction based on dynamic spatial analysis

  • Hajela, Gaurav;Chawla, Meenu;Rasool, Akhtar
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1058-1080
    • /
    • 2021
  • Crime is not a completely random event but rather shows a pattern in space and time. Capturing the dynamic nature of crime patterns is a challenging task. Crime prediction models that rely only on neighborhood influence and demographic features might not be able to capture the dynamics of crime patterns, as demographic data collection does not occur frequently and is static. This work proposes a novel approach for crime count and hotspot prediction to capture the dynamic nature of crime patterns using taxi data along with historical crime and demographic data. The proposed approach predicts crime events in spatial units and classifies each of them into a hotspot category based on the number of crime events. Four models are proposed, which consider different covariates to select a set of independent variables. The experimental results show that the proposed combined subset model (CSM), in which static and dynamic aspects of crime are combined by employing the taxi dataset, is more accurate than the other models presented in this study.

$H_ {\infty}$ PID Controller Design for an Attraction Type Magnetic Levitation System (흡인식 자기부상시스템의 $H_ {\infty}$ PID 제어기 설계)

  • Kim, Seog-Joo;Kim, Chun-Kyung;Kwon, Soon-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1624-1627
    • /
    • 2008
  • This paper deals with a linear matrix inequality (LMI) approach to the design of a PID controller for an attraction type magnetic levitation system. First, we convert the $H_ {\infty}$ PID controller problem into a static output feedback problem. We then solve the static output problem by using the recently developed penalty function method. Numerical experiments show the effectiveness of the proposed algorithm.

Design Re-engineering of the Lower Support Structure of the APR1400 Reactor Internals

  • Tung, Nguyen Anh;Namgung, Ihn
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.25-31
    • /
    • 2017
  • This paper aims to evaluate the conservatism in the design of APR1400 (Advanced Pressurized water Reactor 1400 designed by KHNP) reactor internals component, the LSS (Lower Support Structure). Re-engineering of the LSS is done based on the system design condition data and applicable ASME code that was used for the original APR1400 design. Systems engineering approach is applied to design the LSS of APR1400 without refering APR1400 LSS dimensional parameters and tries to verify important design parameters of APR1400 LSS as well as the validity of the re-engineering design process as independent verification method of reactor component design. Systems engineering approach applied in this study following V-model approach. The re-engineered LSS design showed more than enough conservatism for static loading case. The maximum deflection of LSS is under 1mm (calculated value is 0.25mm) from 4000 mm diameter of LSS. Hence the deflection can be ignored in other reactor internals for structural integrity assessment. Especially the effect of LSS deflection on fuel assembly can be minimized and which is one of the main requirements of LSS design. It also showed that the maximum stress intensity is 2.36MPa for the allowable stress intensity of 60.1 MPa. The stress resulted from the static load is also very small compared to the maximum allowable stress intensity, hence there is more than enough conservatism in the LSS design.

A new approach to modeling the dynamic response of Bernoulli-Euler beam under moving load

  • Maximov, J.T.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.247-265
    • /
    • 2014
  • This article discusses the dynamic response of Bernoulli-Euler straight beam with angular elastic supports subjected to moving load with variable velocity. A new engineering approach for determination of the dynamic effect from the moving load on the stressed and strained state of the beam has been developed. A dynamic coefficient, a ratio of the dynamic to the static deflection of the beam, has been defined on the base of an infinite geometrical absolutely summable series. Generalization of the R. Willis' equation has been carried out: generalized boundary conditions have been introduced; the generalized elastic curve's equation on the base of infinite trigonometric series method has been obtained; the forces of inertia from normal and Coriolis accelerations and reduced beam mass have been taken into account. The influence of the boundary conditions and kinematic characteristics of the moving load on the dynamic coefficient has been investigated. As a result, the dynamic stressed and strained state has been obtained as a multiplication of the static one with the dynamic coefficient. The developed approach has been compared with a finite element one for a concrete engineering case and thus its authenticity has been proved.

A Study of Bi-Static Through-Wall Imaging Radar Using a Noise Waveform (잡음 신호를 이용한 바이스태틱 벽 투과 영상 레이더 연구)

  • Ha, Jong-Soo;Cho, Byung-Lae;Sun, Sun-Gu;Lee, Jong-Min;Cho, Kyu-Gong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.654-660
    • /
    • 2013
  • This paper describes an imaging approach to detect targets behind a wall. To acquire the accurate information over the strong signals reflected by the wall and affected by multipath, a bi-static through-wall imaging radar using a noise waveform is proposed in this paper including the methodology of imaging the received signal. The complete derivation of the proposed approach is presented. And the result of tests is demonstrated to show the possibility of the proposed approach.

Generating LOTOS Specifications from UML Static Structure Diagrams (UML 정적구조 다이아그램으로부터 LOTOS 명세 생성)

  • Kim, Cheol-Hong;Ahn, Yu-Whoan;Lee, Won-Chun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3500-3513
    • /
    • 1999
  • It is recognized that object-oriented methods and formal methods are two different main streams that will influence on the future direction of software engineering. A merging effort on these two technologies, named "a formal approach on system specifications using object-oriented methods" emerges rapidly and produces remarkable research results LOTOS is well-suited to an object-based approach. However, to provide a full object-oriented approach, we need to model generalization (i.e. inheritance and polymorphism). Most authors who have examined this topic have proposed extensions to LOTOS. As an extension of such an effort, this paper proposes a method that generates LOTOS specification from static structure diagrams in UML.

  • PDF

Stability analysis of a rock slope in Himalayas

  • Latha, Gali Madhavi;Garaga, Arunakumari
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.125-140
    • /
    • 2010
  • Slope stability analysis of the right abutment of a railway bridge proposed at about 350 m above the ground level, crossing a river and connecting two huge hillocks in the Himalayas, India is presented in this paper. The site is located in a highly active seismic zone. The rock slopes are intensely jointed and the joint spacing and orientation are varying at different locations. Static slope stability of the rock slope is studied using equivalent continuum approach through the most commonly used commercial numerical tools like FLAC and SLOPE/W of GEOSTUDIO. The factor of safety for the slope under static conditions was 1.88 and it was reduced by 46% with the application of earthquake loads in pseudo-static analysis. The results obtained from the slope stability analyses confirmed the global stability of the slope. However, it is very likely that there could be possibility of wedge failures at some of the pier locations. This paper also presents the results from kinematics of right abutment slope for the wedge failure analysis based on stereographic projections. Based on the kinematics, it is recommended to flatten the slope from 50o to 43o to avoid wedge failures at all pier locations.

Free vibration and static analysis of functionally graded skew magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.493-519
    • /
    • 2018
  • This article presents a finite element (FE) model to assess the free vibration and static response of a functionally graded skew magneto-electro-elastic (FGSMEE) plate. Through the thickness material grading of FGSMEE plate is achieved using power law distribution. The coupled constitutive equations along with the total potential energy approach are used to develop the FE model of FGSMEE plate. The transformation matrix is utilized in bringing out the element matrix corresponding to the global axis to a local axis along the skew edges to specify proper boundary conditions. The effect of skew angle on the natural frequency of an FGSMEE plate is analysed. Further, the study includes the evaluation of the static behavior of FGSMEE plate for various skew angles. The influence of skew angle on the primary quantities such as displacements, electric potential, and magnetic potential, and secondary quantities such as stresses, electric displacement and magnetic induction is studied in detail. In addition, the effect of power-law gradient, thickness ratio, boundary conditions and aspect ratio on the free vibration and static response characteristics of FGSMEE plate has been investigated.

Static Analysis of Two Dimensional Curbed Beam Structure by Finite Element-Transfer Stiffness Coefficent Method (유한요소-전달강성계수법에 의한 2차원 곡선 보 구조물의 정적해석)

  • Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.40-45
    • /
    • 2017
  • The objective of this study is the finite element-transfer stiffness coefficient method, which is the combination of the modeling technique of finite element method and the transfer technique of transfer stiffness coefficient method, is applied in the static analyses of two dimensional curved beam structures. To confirm the effectiveness of the applied method, two computational models are selected and analyzed by using finite element method, finite element-transfer stiffness coefficient method and exact solution. The computational results of the static analyses for two computational models using finite element-transfer stiffness coefficient method are equal to those using finite element method. When the element partition number of curved beam structure is increased, the computational results of the static analyses using both methods approach the exact solution. We confirmed that the finite element-transfer stiffness coefficient method is superior to finite element method when the number of the curved beam elements is increased from the viewpoints of the computational speed and the utility of computer memory.

A GQM Approach to Evaluation of the Quality of SmartThings Applications Using Static Analysis

  • Chang, Byeong-Mo;Son, Janine Cassandra;Choi, Kwanghoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2354-2376
    • /
    • 2020
  • SmartThings is one of the most popular open platforms for home automation IoT solutions that allows users to create their own applications called SmartApps for personal use or for public distribution. The nature of openness demands high standards on the quality of SmartApps, but there have been few studies that have evaluated this thoroughly yet. As part of software quality practice, code reviews are responsible for detecting violations of coding standards and ensuring that best practices are followed. The purpose of this research is to propose systematically designed quality metrics under the well-known Goal/Question/Metric methodology and to evaluate the quality of SmartApps through automatic code reviews using a static analysis. We first organize our static analysis rules by following the GQM methodology, and then we apply the rules to real-world SmartApps to analyze and evaluate them. A study of 105 officially published and 74 community-created real-world SmartApps found a high ratio of violations in both types of SmartApps, and of all violations, security violations were most common. Our static analysis tool can effectively inspect reliability, maintainability, and security violations. The results of the automatic code review indicate the common violations among SmartApps.