• Title/Summary/Keyword: static and dynamic evaluation

Search Result 512, Processing Time 0.029 seconds

The Static and Dynamic Analysis of a 45,000rpm Spindle for a Machine Tool and Evaluation of Its Stiffness (공작기계용 45,000rpm 주축의 정.동적 해석과 강성평가)

  • Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.422-426
    • /
    • 2011
  • The spindle system is very important unit for the product accuracy in machine tools. A spindle system is designed by using the angular contact ceramic ball bearings, built-in motor, oil-air lubrication method and oil jacket cooling method. The static and dynamic analysis and stiffness evaluation of 45,000rpm spindle for machine tool has been investigated. Using a finite element method, we obtained some analyzed a static and dynamic characteristics of a spindle, such as natural frequency, harmonic analysis and we got the value of compliance through it. We evaluated stiffness by taking the inverse this value. A 45,000rpm spindle is successfully developed using the results.

Comparison and Evaluation of Load Test Methods for Aluminum Car Body (알루미늄 차체 하중 시험 방법에 관한 비교 평가)

  • 서승일;박춘수;신병천
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.32-36
    • /
    • 2004
  • Aluminum carbody for rolling stocks is light and perfectly recycled, but includes severe defects which are very dangerous to fatigue strength. Static load test has been performed up to date to assess structural safety of the carbody. However, static load test is not sufficient to evaluate fatigue strength of the carbody, because fatigue failure is caused by dynamic load. In this study, the established load test methods for carbody are described and the characteristics of the methods are discussed. Also, a testing method to simulate dynamic loading condition is proposed for evaluation of fatigue strength of the carbody. The results by the proposed testing method are compared with the results by the static load test and new findings are discussed.

Evaluation of dynamic increase factor in progressive collapse analysis of steel frame structures considering catenary action

  • Ferraioli, Massimiliano
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.253-269
    • /
    • 2019
  • This paper investigates the effects of the tensile catenary action on dynamic increase factor (DIF) in the nonlinear static analysis for progressive collapse of steel-frame buildings. Numerical analyses were performed to verify the accuracy of the empirical and analytical expressions proposed in the literature in cases where the catenary action is activated. For this purpose, nonlinear static and dynamic analyses of a series of steel moment frame buildings with a different number of spans and stories were carried out following the alternate path method. Different column removal scenarios were considered as separate load cases. The dynamic increase factor that approximately compensates for the dynamic effects in the nonlinear static analysis was selected so to match results from the nonlinear dynamic analysis. The study results showed that the many expressions in literature may not work in cases where the catenary stage is fully developed.

A study on the Evaluation for the Static and Dynamic stiffness of a Machining Center (머시닝 센터의 정${\cdot}$동강성 평가에 관한 연구)

  • Lee Choon Man;Park Dong Gun;Lim Sang Heon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.294-299
    • /
    • 2005
  • A machining center is a complex dynamic system whose behavior influences the machining stability and machined surface quality. This paper focused on establishment of a measurement system and experimental study on static, dynamic, and modal analysis of a machining center. The dynamic stiffness result by the analysis showed the weak part of the machining center. The results provided structure modification data for getting better dynamic behaviors.

  • PDF

A Comparative Study on the Static and Dynamic Stiffness Evaluation Methods of Machine Tool Structure (공작기계 구조물의 정ㆍ동강성 평가방법에 관한 연구)

  • 최영휴;강영진;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.46-50
    • /
    • 2002
  • In other to evaluate the static and dynamic stiffness of machine tool structure, the accuracy and error from experimental methods are studied in this paper. The F.E.M., impulse tests and exciter tests are performed for the general simple structure whose exact solution can be obtained. So that the parameter and dynamic compliance can be got. From the result, the variation of natural frequency can be verified from the static preload. Further more the relationship of identify and difference for compliance and direction is presented in the exciting direction and measurement direction.

  • PDF

Nondestructive Evaluation of Bending Strength Performances for Red Pine Containing Knots Using Flexural Vibration Techniques

  • Byeon, Hee-Seop;Ahn, Sang-Yeol;Park, Han-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.13-20
    • /
    • 2005
  • This paper deals with flexural vibration techniques as a means of predicting bending strength properties for quarter-sawn and flat-sawn planes of red pine containing knots. Dynamic modulus of elasticity $(MOE_d)$ was calculated from resonance frequency obtained from the flexural vibration induced by a magnetic driver in quarter-sawn and flat-sawn planes of red pine containing knots. The dynamic MOE were well correlated to bending strength properties. Their correlation coefficients ranged from 0.866 to 0.800 for the regression between dynamic MOE and static bending MOE or MOR. The difference of the values between quarter-sawn and flat-sawn was very small. These values were higher than correlation between percentage of total knot diameter to total width of red pine specimen $(K_T(%))$ as well as $K_O(%)$ base upon ASTM D 3737 and static bending strength properties (correlation coefficient r = 0.448~0.704), and were similar to those between static bending MOE and bending MOR (r = 0.850). These results indicate that dynamic MOE obtained from resonance frequency induced by flexural vibration of magnetic driver is able to effectively use for predicting of static bending strength of red pine containing knots as well as static MOE.

An evaluation of the seismic response of symmetric steel space buildings

  • Yon, Burak
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.399-412
    • /
    • 2016
  • This paper evaluates the seismic response of three dimensional steel space buildings using the spread plastic hinge approach. A numerical study was carried out in which a sample steel space building was selected for pushover analysis and incremental nonlinear dynamic time history analysis. For the nonlinear analysis, three earthquake acceleration records were selected to ensure compatibility with the design spectrum defined in the Turkish Earthquake Code. The interstorey drift, capacity curve, maximum responses and dynamic pushover curves of the building were obtained. The analysis results were compared and good correlation was obtained between the idealized dynamic analyses envelopes with and static pushover curves for the selected building. As a result to more accurately account response of steel buildings, dynamic pushover envelopes can be obtained and compared with static pushover curve of the building.

Development of a Static and Dynamic Analysis System for Motor-Integrated High-Speed Spindle Systems Using Timoshenko Theory and Finite Element Method (Timoshenko 이론과 유한요소법을 이용한 모터내장형 고속주축계의 정특성/동특성 해석시스템 개발)

  • 이용희;김석일;김태형;이재윤
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.11-16
    • /
    • 1998
  • Recently, the motor-integrated spindle systems have been used to simplify the machine tool structure, to improve the motion flexibility of machine tool, and to perform the high-speed machining. In this study, a static and dynamic analysis system for motor-integrated high-speed spindle systems is developed based on Timoshenko theory, finite element method and windows programming techniques. Since the system has various analysis modules related to static deformation analysis, modal analysis, frequency response analysis, unbalance response analysis and so on, it is useful in performing systematically the design and evaluation processes of motor-integrated high-speed spindle systems under windows GUI environment.

  • PDF

Can Functional Assessment Tools Reflect Balance Abilities at 3 Months after Total hip Arthroplasty?

  • Kim, Min-Woo;Ryu, Young-Uk
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.4
    • /
    • pp.51-58
    • /
    • 2018
  • PURPOSE: This study was conducted to determine if the Harrison hip score (HHS), a tool for assessing hip joint function, and the Burg balance scale (BBS), a general balance assessment tool, actually reflect the balance ability of total hip arthroplasty (THA) patients 3 months after surgery. In addition, this study investigated the initial weight distribution strategy for bilateral lower extremity after THA surgery to understand the balance of THA patients. METHODS: Fourteen 3-month THA patients performed static dual standing and sit-to-stand (STS) tasks. Ground reaction forces on each leg were collected to calculate the weight distribution symmetricity (SWD), and the HHS, functional HHS (f-HHS), and BBS were evaluated. Correlation analyses between SWD and the HHS (also f-HHS) and BBS were then applied to the THA patients. RESULTS: The correlations between functional evaluation tools (HHS, f-HHS, BBS) and SWD were weak strength for the static balance task, but moderate for the dynamic STS task. Among the evaluation tools used in the present study, f-HHS was most useful for evaluation of dynamic balance ability. CONCLUSION: The results suggest that use of HHS, f-HHS, and BBS as functional evaluation tools does not provide meaningful information regarding balance ability, but that they are useful for evaluating dynamic balance ability of THA patients. The dynamic balance ability at 3 months after THA seems to be under development.