• Title/Summary/Keyword: static MOE

Search Result 45, Processing Time 0.021 seconds

Effect of Green Tea and Saw Dust Contents on Static Bending Strength Performance of Hybrid Boards Composed of Wood Fiber, Saw Dust and Green Tea (목재섬유, 톱밥 및 녹차 이종복합보드의 정적 휨 강도성능에 미치는 녹차 및 톱밥 배합비율의 영향)

  • Park, Han-Min;Lee, Soo-Kyeong;Seok, Ji-Hoon;Choi, Nam-Kyung;Kwon, Chang-Bae;Heo, Hwang-Sun;Kim, Jong-Chul
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.41-46
    • /
    • 2011
  • In this study, in addition to the green tea-wood fiber hybrid composite boards of previous researches, to make effective use of saw dust of domestic cypress tree with functionalities and application as interior materials, eco-friendly hybrid composite boards were manufactured from wood fiber, green tea and saw dust of cypress tree. We investigated the effect of the component ratio of saw dust and green tea on static bending strength performances. Static bending MOE (modulus of elasticity) was within 0.956~1.18GPa, and showed the highest value in wood fiber : green tea : saw dust = 50 : 40 : 10 of the component ratio, and had the lowest value in 50 : 30 : 20 of component ratio. These values were 2.0~3.1times lower than those of green tea-wood fiber hybrid composite boards reported in the previous researches. The bending MOR (modulus of rupture) showed 8.99~11.5MPa, the change of the bending MOR with component ratio of the factors was the same as that of bending MOE. These values had 1.9~3.5 times lower value than those of green tea-wood fiber hybrid composite boards, and showed the slightly lower values than the MOR of particle boards (PB) and medium density fiberboards (MDF) prescribed in Korean Industrial Standard. Therefore, it is considered that these hybrid composite boards need to improve strength performances by component ratio change, hybrid composite with other materials and adhesive change etc. in order to industrialize the hybrid composite boards.

Effect of fire - retardant treatment and redrying on the mechanical properties of radiata pine (내화처리(耐火處理) 및 재건조(再乾操)가 라디에타소나무의 역학적(力學的) 성질(性質)에 미치는 영향(影響))

  • Chung, Doo-Jin;Jo, Jae-Sung;Yun, Ki-Eon;Kim, Jae-Jin;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.37-49
    • /
    • 1999
  • The effect of fire-retardant treatment and redrying on the mechanical properties of radiata pine sapwood were evaluated. Small, clear specimens were treated with three different fire-retardant(FR) chemicals, borax-boric acid(BRX), minalith(MIN), and pyresote(PYR), with target retentions of 30 and 60kg/$m^3$, and then redried at maximum dry-bulb temperature of $25^{\circ}C$, $60^{\circ}C$, $80^{\circ}C$ or $110^{\circ}C$. Each specimen, including untreated and water-treated controls, was tested in static bending and in compression parallel to grain. The extent of strength reduction was dependent on the type of FR chemicals, retention, and redrying temperature, and a highly significant interaction existed between FR treatment and redrying temperature. Modulus of rupture(MOR) and work to maximum load(WML) were significantly decreased by FR treatment and redrying. None of three FR chemicals adversely affect modulus of elasticity (MOE) and maximum crushing strength(MCS). MOE of BRX treatment and MCS of both BRX and PYR treatment increased significantly compared to untreated controls. No significant differences existed between retention levels except for MOE and MCS of some combinations of FR chemicals and redrying temperatures. Although MOE and MCS was not significantly affected by any of the redrying temperatures, these properties were generally decreased with the increase in redrying temperature. The significant reduction in MOR and WML was observed in BRX treatment when dried at temperatures of $60^{\circ}C$ and above, and in MIN and PYR treatment when dried at temperatures of $80^{\circ}C$ and above. Consequently, BRX-treated radiata pine should not be redried at temperatures >$60^{\circ}C$, and MIN- and PYR-treated radiata pine should not be redried at temperatures > $80^{\circ}C$ where bending strength and energy-related properties are important design considerations.

  • PDF

Studies on Manufacturing Wood Particle-Polypropylene Fiber Composite Board

  • Lee, Chan-Ho;Eom, Young-Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.47-58
    • /
    • 2001
  • For finding both ways of recycling the wood and plastic wastes and solving the problem of free formaldehyde gas emission through manufacturing wood particle-polypropylene fiber composite board without addition of formaldehyde-based thermosetting resin adhesive, control particleboards and nonwoven web composite boards from wood particle and polypropylene fiber formulation of 50 : 50, 60 : 40, and 70 : 30 were manufactured at density levels of 0.5, 0.6, 0.7, and 0.8 g/$cm^3$, and were tested both in the physical and mechanical properties according to ASTM D 1037-93. In the physical properties, control particleboard had significantly higher moisture content than composite board. In composite board, moisture content decreased with the increase of target density only in the board with higher content of polypropylene fiber and also appeared to increase with the increase of wood particle content at a given target density. Control particleboard showed significantly greater water absorption than composite board and its water absorption decreased with the increase of target density. In composite board, water absorption decreased with the increase of target density at a given formulation but increased with the increase of wood particle content at a given target density. After 2 and 24 hours immersion, control particleboard was significantly higher in thickness swelling than composite board and its thickness swelling increased with the increase of target density. In composite board, thickness swelling did not vary significantly with the target density at a given formulation but its thickness swelling increased as wood particle content increased at a given target density. Static bending MOR and MOE under dry and wet conditions increased with the increase of target density at a given formulation of wood particle and polypropylene fiber. Especially, the MOR and MOE under wet condition were considerably larger in composite board than in control particleboard. In general, composite board showed superior bending strength properties to control particleboard, And the composite board made from wood particle and polypropylene fiber formulation of 50 : 50 at target density of 0.8 g/$cm^3$ exhibited the greatest bending strength properties. Though problems in uniform mixing and strong binding of wood particle with polypropylene fiber are unavoidable due to their extremely different shape and polarity, wood particle-polypropylene fiber composite boards with higher performance, as a potential substitute for the commercial particleboards, could be made just by controlling processing variables.

  • PDF

Nondestructive Bending Strength Evaluation of Woodceramics Made from Woody Part of Broussonetia kazinoki Sieb. -Effect of Carbonization Temperature- (닥나무의 목질부로 만든 우드세라믹의 비파괴휨강도평가 -소성온도의 영향-)

  • Byeon, Hee-Seop;Won, Kyung-Rok;Lee, Ho-Young;Oh, Seung-Won
    • Journal of agriculture & life science
    • /
    • v.46 no.1
    • /
    • pp.35-41
    • /
    • 2012
  • Nondestructive evaluation (NDE) technique method using a resonance frequency mode was carried out for woodceramics made by different carbonizing temperature (600, 800, 1000, $1200^{\circ}C$) for Broussonetia kazinoki Sieb. Dynamic modulus of elasticity increased with increasing carbonizing temperature. There was a close relationship of dynamic modulus of elasticity and static bending modulus of elasticity to MOR. Therefore, the dynamic modulus of elasticity using resonance frequency mode is useful as a nondestructive evaluation method for predicting the MOR of woodceramics made by different carbonizing temperature for B. kazinoki Sieb.

Static Bending Strength Performance of Domestic Wood-Concrete Hybrid Laminated Materials (국내산 목재-콘크리트 복합적층재의 정적 휨 강도성능)

  • Byeon, Jin-Woong;Cho, Young-June;Lee, Je-Ryong;Park, Han-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.48-56
    • /
    • 2016
  • In this study, to develop the lattice materials with a low environmental load for restoring the destroyed forest, 7 types of wood-concrete hybrid laminated materials were manufactured with domestic four softwoods, three hardwoods and concrete, and the effects of density of wood species on static bending strength performances were investigated. Bending MOEs of wood-concrete hybrid laminated materials increased with increasing density of wood species on the whole, and the values were higher than that of concrete by hybrid-laminating woods on the concrete. It was found that the measure values of bending MOEs were slightly lower than the calculated values calculated using equivalent cross-section method from MOE of each laminae of hybrid laminated materials and the difference between them was less than 10%. Bending proportional limit stresses of hybrid laminated materials showed 1.2-1.6 times higher than that of concrete by hybrid-laminating. Bending strength (MOR) of hybrid laminated materials increased with the density of wood species. By hybrid-laminating, the MOR of concrete was considerably increased. Therefore, it is considered that wood-concrete hybrid laminated materials can be applied as a materials with a low environmental load and durability for ecological restoration.