• Title/Summary/Keyword: static/dynamic pattern

Search Result 137, Processing Time 0.029 seconds

Systolic Arrays for Constructing Static and Dynamic Voronoi Diagrams (두 형의 Voronoi Diagram 구축을 위한 Systolic Arrays)

  • O, Seong-Jun
    • ETRI Journal
    • /
    • v.10 no.3
    • /
    • pp.125-140
    • /
    • 1988
  • Computational geometry has wide applications in pattern recognition, image processing, VLSI design, and computer graphics. Voronoi diagrams in computational geometry possess many important properites which are related to other geometric structures of a set of point. In this pater the design of systolic algorithms for the static and the dynamic Voronoi diagrams is considered. The major motivation for developing the systolic architecture is for VLSI implementation. A new systematic transform technique for designing systolic arrays, in particular, for the problem in computational geometry has been proposed. Following this procedure, a type T systolic array architecture and associated systolic algorithms have been designed for constructing Voronoi diagrams. The functions of the cells in the array are also specified. The resulting systolic array achieves the maximal throughput with O(n) computational complexity.

  • PDF

FSI Analysis of TLP Tether System for Floating Wind Turbine

  • Chen, Zheng-Shou;Kim, Wu-Joan;Yoo, Jae-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.10-19
    • /
    • 2010
  • ANSYS multi-physics software was applied to solve the coupled dynamic problem related to a full-scale TLP foundation for floating wind turbines. In this coupled dynamics simulation, the forced oscillation imposed on the tethers' top resulting from the sway of the wind turbine platform and the self-excited vortex-induced vibration (VIV) along the tether span have been taken into account. The stability of this tensioned tether system has been validated in the form of separate static and dynamic analyses. The dynamic characteristics of the tensioned tether linked to the floating wind turbine were analyzed by the resultant modal form and its corresponding vortex shedding pattern. The calculated result shows that even a slight forced oscillation imposed on the tethers' top leads to the VIV amplification and enhances the risk of instability in the case of low pretension. It is also found that the "synchronization" would be aggravated when the top tension decreases and the "2P" vortex shedding mode takes place. The increased top tension imposed on the tethers contributes to the stability of the tensioned legs by diminishing the oscillation amplitude markedly.

Influence of dynamic loading induced by free fall ball on high-performance concrete slabs with different steel fiber contents

  • Al kulabi, Ahmed K.;Al zahid, Ali A.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.1
    • /
    • pp.19-32
    • /
    • 2019
  • One way to provide safe buildings and to protect tenants from the terrorist attacks that have been increasing in the world is to study the behavior of buildings members after being exposed to dynamic loads. Buildings behaviour after being exposed to attacks inspired researchers all around the world to investigate the effect of impact loads on buildings members like slabs and to deeply study the properties of High Performance Concrete. HPC is well-known in its high performance and resistance to dynamic loads when it is compared with normal weight concrete. Therefore, the aim of this paper is finding out the impact of dynamic loads on RPC slabs' flexural capacity, serviceability loads, and failure type. For that purpose and to get answers for these questions, three concrete slabs with 0.5, 1, and 2% steel fiber contents were experimentally tested. The tests results showed that the content of steel fiber plays the key role in specifying the static capacity of concrete slabs after being dynamically loaded, and increasing the content of steel fiber led to improving the static loading capacity, decreased the cracks numbers and widths at the same time, and provided a safer environment for the buildings residents.

Identification of progressive collapse pushover based on a kinetic energy criterion

  • Menchel, K.;Massart, T.J.;Bouillard, Ph.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.3
    • /
    • pp.427-447
    • /
    • 2011
  • The progressive collapse phenomenon is generally regarded as dynamic. Due to the impracticality of nonlinear dynamic computations for practitioners, an interest arises for the development of equivalent static pushover procedures. The present paper proposes a methodology to identify such a procedure for sudden column removals, using energetic evaluations to determine the pushover loads to apply. In a dynamic context, equality between the cumulated external and internal works indicates a vanishing kinetic energy. If such a state is reached, the structure is sometimes assumed able to withstand the column removal. Approximations of these works can be estimated using a static computation, leading to an estimate of the displacements at the zero kinetic energy configuration. In comparison with other available procedures based on such criteria, the present contribution identifies loading patterns to associate with the zero-kinetic energy criterion to avoid a single-degree-of-freedom idealisation. A parametric study over a family of regular steel structures of varying sizes uses non-linear dynamic computations to assess the proposed pushover loading pattern for the cases of central and lateral ground floor column failure. The identified quasi-static loading schemes are shown to allow detecting nearly all dynamically detected plastic hinges, so that the various beams are provided with sufficient resistance during the design process. A proper accuracy is obtained for the plastic rotations of the most plastified hinges almost independently of the design parameters (loads, geometry, robustness), indicating that the methodology could be extended to provide estimates of the required ductility for the beams, columns, and beam-column connections.

Design and Manufacturing of a 3D Pattern Mill (고속 3차원 패턴가공기의 설계 및 제작에 관한 연구)

  • 김의중;최진경;한성종;주상율;최성원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.220-223
    • /
    • 2000
  • In this study for the development of a 3D pattern mill, we designed its layout which has high stiffness and low-weight structure. We calculated the load of each axis component when 3D pattern mill is under the worst cutting conditions. On base of the calculations, we determined the size of its structure and selected main components of the machine. Also, using FEM we analyzed the layout design of 3D pattern mill to reduce the wcight of structure and increase stiffness of it. According to the load position and direction, shapes and values of the deformation and the stress distributions are calculated, also we calculated the natural frequencies and mode shapes in order ta modify and redesign the weak parts

  • PDF

A study on Countermeasures by Detecting Trojan-type Downloader/Dropper Malicious Code

  • Kim, Hee Wan
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.288-294
    • /
    • 2021
  • There are various ways to be infected with malicious code due to the increase in Internet use, such as the web, affiliate programs, P2P, illegal software, DNS alteration of routers, word processor vulnerabilities, spam mail, and storage media. In addition, malicious codes are produced more easily than before through automatic generation programs due to evasion technology according to the advancement of production technology. In the past, the propagation speed of malicious code was slow, the infection route was limited, and the propagation technology had a simple structure, so there was enough time to study countermeasures. However, current malicious codes have become very intelligent by absorbing technologies such as concealment technology and self-transformation, causing problems such as distributed denial of service attacks (DDoS), spam sending and personal information theft. The existing malware detection technique, which is a signature detection technique, cannot respond when it encounters a malicious code whose attack pattern has been changed or a new type of malicious code. In addition, it is difficult to perform static analysis on malicious code to which code obfuscation, encryption, and packing techniques are applied to make malicious code analysis difficult. Therefore, in this paper, a method to detect malicious code through dynamic analysis and static analysis using Trojan-type Downloader/Dropper malicious code was showed, and suggested to malicious code detection and countermeasures.

Dynamic Analysis of Plate Girder Bridge Using Object-Oriented Technique (객체지향기법을 이용한 플레이트 거더교의 동해석)

  • Cho, Jeong-Rae;Kwark, Jong-Won;Chin, Won-Jong;Choi, Eun-Suk;Kang, Jae-Yoon;Lee, Jung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.486-489
    • /
    • 2006
  • This paper presents a newly proposed object-oriented finite element framework and its applications on dynamic analysis of plate girder bridge. The developed framework supports various types of finite elements, materials, constraints, loads, and solution methods. One major feature different from other object-oriented finite element programs is that static model and dynamic state can be easily read from or written to a file. In addition, the framework supports efficient DOF pattern handling for a node connecting elements with different DOF patterns, new multi-point constraint handling, and various scripting languages for easy use of the library. In order to show the applicability to dynamic analysis, dynamic moving load analysis on plate girder bridge is performed.

  • PDF

분산 데이타베이스에서의 동적 화일배정에 관한 연구

  • 황영헌;김대환;김영호;강석호
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.275-278
    • /
    • 1996
  • We propose dynamic file allocation method in distributed database management system with changing access patterns. There are a lot of studies on file allocation problem in D-DBMS, and those studies deal with off-line analysis and optimization. Those works are well for systems with static database access patterns, but are inadequate for systems that have changing access patterns. In these systems, dynamic file allocation along with access pattern is more proper. In advance, Brunstrom et al. studied on this area, but they dealt a extremely simplified model. So, we make more practical models to simulate real system. In these models, many factors that were disregard in the advance study are considered. These models are composed with the non-replication system and the replication system. In addition to, we deal with CPU workload balancing in such system in order to improve performance of systems. Our methodology is very simple and realistic, therefore we think that it will give a lot of improvement in D-DBMS with changing access pattern.

  • PDF

Seismic Performance Evaluation of a School Gymnasium Using Static Anlysis (정적해석에 의한 학교 체육관의 내진 성능 평가)

  • Morooka, Shigehiro;Tsuda, Seita;Ohsaki, Makoto
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.4
    • /
    • pp.49-59
    • /
    • 2009
  • The seismic responses of small-scale spatial frames such as school gymnasiums are usually evaluated using static analysis, although time-history analysis should be carried out to fully incorporate the dynamic responses of the structures against seismic motions. In this study, advanced static analysis procedures arc presented for school gymnasiums that will improve the performance evaluation against seismic motions. The seismic loads are approximated by equivalent static loads corresponding to the two performance levels; i.e., Levels 1 and 2 defined by the Japanese building standard. The importance of utilizing the eigenmode in the load pattern is discussed. Simple static analysis procedures are presented for evaluation of maximum vertical acceleration. It is shown that the static analysis for Level 2 input significantly underestimates the responses by dynamic analysis; however, the inelastic responses for Level 2 are shown to be successfully evaluated using the equivalent linearization that is similar to the $^{\circ}$Dmethod based on calculation of limit strength$^{\circ}{\pm}$ for building frames in Japan.

  • PDF

A Hybrid Value Predictor using Static and Dynamic Classification in Superscalar Processors (슈퍼스칼라 프로세서에서 정적 및 동적 분류를 사용한 혼합형 결과 값 예측기)

  • 김주익;박홍준;조영일
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.10
    • /
    • pp.569-578
    • /
    • 2003
  • Data dependencies are one of major hurdles to limit ILP(Instruction Level Parallelism), so several related works have suggested that the limit imposed by data dependencies can be overcome to some extent with use of the data value prediction. Hybrid value predictor can obtain the high prediction accuracy using advantages of various predictors, but it has a defect that same instruction has overlapping entries in all predictor. In this paper, we propose a new hybrid value predictor which achieves high performance by using the information of static and dynamic classification. The proposed predictor can enhance the prediction accuracy and efficiently decrease the prediction table size of predictor, because it allocates each instruction into single best-suited predictor during the fetch stage by using the information of static classification. Also, it can enhance the prediction accuracy because it selects a best- suited prediction method for the “Unknown”pattern instructions by using the dynamic classification mechanism. Simulation results based on the SimpleScalar/PISA tool set and the SPECint95 benchmarks show the average correct prediction rate of 85.1% by using the static classification mechanism. Also, we achieve the average correction prediction rate of 87.6% by using static and dynamic classification mechanism.