• 제목/요약/키워드: state-space model

검색결과 1,024건 처리시간 0.029초

상태-공간 모형에서의 주가의 가성 평균-회귀 (Spurious Mean-Reversion of Stock Prices in the State-Space Model)

  • 최원혁;전덕빈;김동수;노재선
    • 한국경영과학회지
    • /
    • 제36권1호
    • /
    • pp.13-26
    • /
    • 2011
  • In order to explain the U-shaped pattern of autocorrelations of stock returns i.e., autocorrelations starting around 0 for short-term horizons and becoming negative and then moving toward 0 for long-term horizons, researchers suggested the use of a state-space model consisting of an I(1) permanent component and an AR(1) stationary component, where the two components are assumed to be independent. They concluded that auto-regression coefficients derived from the state-space model follow a U-shape pattern and thus there is mean-reversion in stock prices. In this paper, we show that only negative autocorrelations are feasible under the assumption that the permanent component and the stationary component are independent in the state-space model. When the two components are allowed to be correlated in the state-space model, we show that the sign of the auto-regression coefficients is not restricted as negative. Monthly return data for all NYSE stocks for the period from 1926 to 2007 support the state-space model with correlated noise processes. However, the auto-regression coefficients of the ARIMA process, equivalent to the state-space model with correlated noise processes, do not follow a U-shaped pattern, but are always positive.

리튬 이온 전지의 전기적 등가 회로에 관한 연속시간 및 이산시간 상태방정식 연구 (Continuous Time and Discrete Time State Equation Analysis about Electrical Equivalent Circuit Model for Lithium-Ion Battery)

  • 한승윤;박진형;박성윤;김승우;이평연;김종훈
    • 전력전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.303-310
    • /
    • 2020
  • Estimating the accurate internal state of lithium ion batteries to increase their safety and efficiency is crucial. Various algorithms are used to estimate the internal state of a lithium ion battery, such as the extended Kalman filter and sliding mode observer. A state-space model is essential in using algorithms to estimate the internal state of a battery. Two principal methods are used to express the state-space model, namely, continuous time and discrete time. In this work, the extended Kalman filter is employed to estimate the internal state of a battery. Moreover, this work presents and analyzes the estimation performance of algorithms consisting of a continuous time state-space model and a discrete time state-space model through static and dynamic profiles.

용존산소 농도모의시 상태공간모형과 승법 ARIMA모형의 시계열 분석 (Time series Analysis of State-space Model and Multiplication ARIMA Model in Dissolved Oxygen Simulation)

  • 이원호;서인석;한양수
    • 환경위생공학
    • /
    • 제15권2호
    • /
    • pp.65-74
    • /
    • 2000
  • The purpose of this study is to develop the stochastic stream water quality model for the intake station of Chung-Ju city waterworks in the Han river system. This model was based on the theory of Box-Jenkins Multiplicative ARIMA(SARIMA) and the state space model to simulate changes of water qualities. Variable of water qualities included in the model are temperature and dissolved oxygen(DO). The models development were based on the data obtained from Jan. 1990 to Dec. 1997 and followed the typical procedures of the Box-Jenkins method including identification and estimation. The seasonality of DO and temperature data to formulate for the SARIMA model are conspicuous and the period of revolution was twelve months. Both models had seasonality of twelve months and were formulates as SARIMA {TEX}$(2,1,1)(1,1,1)_{12}${/TEX} for DO and temperature. The models were validated by testing normality and independency of the residuals. The prediction ability of SARIMA model and state space model were tested using the data collected from Jan. 1998 to Oct. 1999. There were good agreements between the model predictions and the field measurements. The performance of the SARIMA model and state space model were examined through comparisons between the historical and generated monthly dissolved oxygen series. The result reveal that the state space model lead to the improved accuracy.

  • PDF

상태공간모형에서 주가의 평균회귀현상에 대한 재평가 (Reappraisal of Mean-Reversion of Stock Prices in the State-Space Model)

  • 전덕빈;최원혁
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2006년도 추계학술대회
    • /
    • pp.173-179
    • /
    • 2006
  • In order to explain a U-shape pattern of stock returns, Fama and French(1988) suggested the state-space model consisting of I(1) permanent component and AR(1) stationary component. They concluded the autoregression coefficient induced from the state-space model follow the U-shape pattern and the U-shape pattern of stock returns was due to both negative autocorrelation in returns beyond a year and substantial mean-reversion in stock market prices. However, we found negative autocorrelation is induced under the assumption that permanent and stationary noise component are independent in the state-space model. In this paper, we derive the autoregression coefficient based on ARIMA process equivalent to the state-space model without the assumption of independency. Based on the estimated parameters, we investigate the pattern of the time-varying autoregression coefficient and conclude the autoregression coefficient from the state-space model of ARIMA(1,1,1) process does not follow a U-shape pattern, but has always positive sign. We applied this result on the data of 1 month retums for all NYSE stocks for the 1926-85 period from the Center for Research in Security Prices.

  • PDF

상태 공간 모형에서의 모수 공간 제약 (Parameter Space Restriction in State-Space Model)

  • 전덕빈;김동수;박성호
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2006년도 추계학술대회
    • /
    • pp.169-172
    • /
    • 2006
  • Most studies using state-space models have been conducted under the assumption of independently distributed noises in measurement and state equation without adequate verification of the assumption. To avoid the improper use of state-space model, testing the assumption prior to the parameter estimation of state-space model is very important. The purpose of this paper is to investigate the general relationship between parameters of state-space models and those of ARIMA processes. Under the assumption, we derive restricted parameter spaces of ARIMA(p,0,p-1) models with mutually different AR roots where $p\;{\le}\;5$. In addition, the results of ARIMA(p,0,p-1) case can be expanded to more general ARIMA models, such as ARIMA(p-1,0,p-1), ARIMA(p-1,1,p-1), ARIMA(p,0,p-2) and ARIMA(p-1,1,p-2).

  • PDF

Grouping stocks using dynamic linear models

  • Sihyeon, Kim;Byeongchan, Seong
    • Communications for Statistical Applications and Methods
    • /
    • 제29권6호
    • /
    • pp.695-708
    • /
    • 2022
  • Recently, several studies have been conducted using state space model. In this study, a dynamic linear model with state space model form is applied to stock data. The monthly returns for 135 Korean stocks are fitted to a dynamic linear model, to obtain an estimate of the time-varying 𝛽-coefficient time-series. The model formula used for the return is a capital asset pricing model formula explained in economics. In particular, the transition equation of the state space model form is appropriately modified to satisfy the assumptions of the error term. k-shape clustering is performed to classify the 135 estimated 𝛽 time-series into several groups. As a result of the clustering, four clusters are obtained, each consisting of approximately 30 stocks. It is found that the distribution is different for each group, so that it is well grouped to have its own characteristics. In addition, a common pattern is observed for each group, which could be interpreted appropriately.

유압 감쇄기의 상태공간 모델에 대한 연구 (An Investigation into the State-Space Model for a Hydraulic Attenuator)

  • 이재천
    • 한국정밀공학회지
    • /
    • 제19권5호
    • /
    • pp.168-175
    • /
    • 2002
  • The hydraulic acoustic attenuator fur an automotive active suspension system is so highly nonlinear and of high order that the analysis in time-domain has been performed quite little. In this paper, a state-space representation of the dynamics for a hydraulic attenuator was presented utilizing the electrical analogy. And the results of experiment were compared with those of simulation to validate the state-space model proposed. The comparison revealed that the state-space model proposed is practically applicable to estimate the dynamic responses of the hydraulic attenuator in time-domain.

서해 어획대상 잠재생산량 추정을 위한 자원평가모델의 비교 분석 (Comparative analysis of stock assessment models for analyzing potential yield of fishery resources in the West Sea, Korea)

  • 최민제;김도훈;최지훈
    • 수산해양기술연구
    • /
    • 제55권3호
    • /
    • pp.206-216
    • /
    • 2019
  • This study is aimed to compare stock assessment models depending on how the models fit to observed data. Process-error model, Observation-error model, and Bayesian state-space model for the Korean Western coast fisheries were applied for comparison. Analytical results show that there is the least error between the estimated CPUE and the observed CPUE with the Bayesian state-space model; consequently, results of the Bayesian state-space model are the most reliable. According to the Bayesian State-space model, potential yield of fishery resources in the West Sea of Korea is estimated to be 231,949 tons per year. However, the results show that the fishery resources of West Sea have been decreasing since 1967. In addition, the amounts of stock in 2013 are assessed to be only 36% of the stock biomass at MSY level. Therefore, policy efforts are needed to recover the fishery resources of West Sea of Korea.

추계학적 모의발생기법을 이용한 월 유출 예측 (The Forecasting of Monthly Runoff using Stocastic Simulation Technique)

  • 안상진;이재경
    • 한국수자원학회논문집
    • /
    • 제33권2호
    • /
    • pp.159-167
    • /
    • 2000
  • 본 연구는 낙동강수계인 위천 유역의 최하류 군위 지점에 대해 추계학적 모형인 Box-Jenkin의 승법 ARIMA 모형과 상태공간모형 이론적 토대로 하여 계절별 월 유출량을 모의하였다. 다변량 시계열 모형인 상태공간모형의 입력변수로 월 유효우량과 균등기간의 관측된 월 유출량을 사용하여 군위지점의 월 유출량을 예측한 결과 다변량 시계열 모형인 승법 ARIMA모형에 비하여 표준오차가 작게 나타났으므로, 유효우량과 유출량을 함께 이용하는 상태공간 모형을 이용하여 합리적인 유출량 예측이 가능하도록 하였다. 본 논문은 월 유출량 기록치 및 유효우량 자료를 분석하여 승법 ARIMA 모형 및 상태공간 모형에 적용하였으며, 상태공가 모형의 이론을 적용하여 VAR(P)의 P값을 구하기 위해 시차에 의한 AIC 값을 이용하였다. VARMA 모형은 정준상관계수를 이용한 상태공간 모형을 구하여 구축하였다. 따라서, 본 논문에서는 구축된 상태공간 모형을 사용하여 위천유역의 군위 지점에서 장·단기 유출량을 예측하여 수자원의 장·단기전략 수립에 도움을 주기 위함이다.

  • PDF

State-Space Model Predictive Control Method for Core Power Control in Pressurized Water Reactor Nuclear Power Stations

  • Wang, Guoxu;Wu, Jie;Zeng, Bifan;Xu, Zhibin;Wu, Wanqiang;Ma, Xiaoqian
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.134-140
    • /
    • 2017
  • A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.