• Title/Summary/Keyword: state recognition

Search Result 1,016, Processing Time 0.031 seconds

Development of Facial Emotion Recognition System Based on Optimization of HMM Structure by using Harmony Search Algorithm (Harmony Search 알고리즘 기반 HMM 구조 최적화에 의한 얼굴 정서 인식 시스템 개발)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.395-400
    • /
    • 2011
  • In this paper, we propose an study of the facial emotion recognition considering the dynamical variation of emotional state in facial image sequences. The proposed system consists of two main step: facial image based emotional feature extraction and emotional state classification/recognition. At first, we propose a method for extracting and analyzing the emotional feature region using a combination of Active Shape Model (ASM) and Facial Action Units (FAUs). And then, it is proposed that emotional state classification and recognition method based on Hidden Markov Model (HMM) type of dynamic Bayesian network. Also, we adopt a Harmony Search (HS) algorithm based heuristic optimization procedure in a parameter learning of HMM in order to classify the emotional state more accurately. By using all these methods, we construct the emotion recognition system based on variations of the dynamic facial image sequence and make an attempt at improvement of the recognition performance.

Improvement of Recognition Performance for Limabeam Algorithm by using MLLR Adaptation

  • Nguyen, Dinh Cuong;Choi, Suk-Nam;Chung, Hyun-Yeol
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.4
    • /
    • pp.219-225
    • /
    • 2013
  • This paper presents a method using Maximum-Likelihood Linear Regression (MLLR) adaptation to improve recognition performance of Limabeam algorithm for speech recognition using microphone array. From our investigation on Limabeam algorithm, we can see that the performance of filtering optimization depends strongly on the supporting optimal state sequence and this sequence is created by using Viterbi algorithm trained with HMM model. So we propose an approach using MLLR adaptation for the recognition of speech uttered in a new environment to obtain better optimal state sequence that support for the filtering parameters' optimal step. Experimental results show that the system embedded with MLLR adaptation presents the word correct recognition rate 2% higher than that of original calibrate Limabeam and also present 7% higher than that of Delay and Sum algorithm. The best recognition accuracy of 89.4% is obtained when we use 4 microphones with 5 utterances for adaptation.

Chip type discrimination by pattern recognition technique (패턴인식 기술에 의한 칩형태 판별)

  • Kang, Jong-Pyo;Choi, Man-Sung;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.4
    • /
    • pp.32-38
    • /
    • 1988
  • Apaptive cintrol of machine tool is aimed to change cutting state satis- factorily without aid of a machine operator, if the cuting state is abnomal such as formation of tangled ribbon type chip, built-up edge and generation of chattering and so on. Among these the recognition of chip type is one of the most important since it has imlications relate to : 1. Safety of operator 2. Stoppage of work due to entanglment in tool and workpiece of chip 3. Problem of producted chip control In this paper the chip type is discriminatied by the pattern recognition technique. It is found that the power spectrum of cutting force for each chip type has it's own special pattern. Linear discriminant function for the recognition of the chip type is obtained by learning process. The discriminant function can be the basis of adaptive control for the rate of success of recognition by pattern recognition technique is at leasthigher than 83%.

  • PDF

Feature Recognition: the State of the Art

  • JungHyun Han
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.68-85
    • /
    • 1998
  • Solid modeling refers to techniques for unambiguous representations of three-dimensional objects. Feature recognition is a sub-discipline focusing on the design and implementation of algorithms for detecting manufacturing information such as holes, slots, etc. in a solid model. Automated feature recognition has been an active research area in stolid modeling for many years, and is considered to be a critical component for CAD/CAM integration. This paper gives a technical overview of the state of the art in feature recognition research. Rather than giving an exhaustive survey, I focus on the three currently dominant feature recognition technologies: graph-based algorithms, volumetric decomposition techniques, and hint-based geometric reasoning. For each approach, I present a detailed description of the algorithms being employed along with some assessments of the technology. I conclude by outlining important open research and development issues.

  • PDF

Discharging/Charging Voltage-Temperature Pattern Recognition for Improved SOC/Capacity Estimation and SOH Prediction at Various Temperatures

  • Kim, Jong-Hoon;Lee, Seong-Jun;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • This study investigates an application of the Hamming network-dual extended Kalman filter (DEKF) based on pattern recognition for high accuracy state-of-charge (SOC)/capacity estimation and state-of-health (SOH) prediction at various temperatures. The averaged nine discharging/charging voltage-temperature (DCVT) patterns for ten fresh Li-Ion cells at experimental temperatures are measured as representative patterns, together with cell model parameters. Through statistical analysis, the Hamming network is applied to identify the representative pattern that matches most closely with the pattern of an arbitrary cell measured at any temperature. Based on temperature-checking process, model parameters for a representative DCVT pattern can then be applied to estimate SOC/capacity and to predict SOH of an arbitrary cell using the DEKF. This avoids the need for repeated parameter measuremet.

A Novel Battery State of Health Estimation Method Based on Outlier Detection Algorithm

  • Piao, Chang-hao;Hu, Zi-hao;Su, Ling;Zhao, Jian-fei
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1802-1811
    • /
    • 2016
  • A novel battery SOH estimation algorithm based on outlier detection has been presented. The Battery state of health (SOH) is one of the most important parameters that describes the usability state of the power battery system. Firstly, a battery system model with lifetime fading characteristic was established, and the battery characteristic parameters were acquired from the lifetime fading process. Then, the outlier detection method based on angular distribution was used to identify the outliers among the battery behaviors. Lastly, the functional relationship between battery SOH and the outlier distribution was obtained by polynomial fitting method. The experimental results show that the algorithm can identify the outliers accurately, and the absolute error between the SOH estimation value and true value is less than 3%.

Korean Phoneme Recognition Using duration-dependent 3-State Hidden Markov Model (음소길이를 고려한 3-State Hidden Markov Model 에 의한 한국어 음소인식)

  • Yoo, H.-C.;Lee, H.-J.;Park, B.-C.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.81-87
    • /
    • 1989
  • This paper discribes the method associated with modeling of Korean phonemes. Hidden Markov models(HMM's) may be viewed as an effective technique for modeling the inherent nonstationarity of speech signal. We propose a 3-state phoneme model to represent the sequentially changing characteristics of phonemes, i.e., transition-to-stationary-to-transition. Also we clarify that the duration of a phoneme is an important factor to have an effect in recognition accuracy and show that improvement in recognition rate can be obtained by using duration-dependent 3-state hidden Markov models.

  • PDF

Optical Implementation of Improved IPA Model Using Hierarchical Recognition Algorithm (계층적 인식 알고리즘을 이용한 개선된 패턴상호연상모델의 광학적 구현)

  • 하재홍;김성용;김수중
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.7
    • /
    • pp.55-62
    • /
    • 1994
  • Interpattern association (IPA) model which the interconnection weight matrix(IWM) is constructed by the association between patterns is effective in similar pattern recognitions. But, if the number of reference patterns is increased, the ability of recognition is decreased. Using a hierarchical recognition algorithm which adopts the tree search strategy, we classified reference patterns into sub-groups by similarity. In IPA model, if input includes random noise we make it converge to reference pattern by means of input includes random noise we make it converge to reference pattern by means of increasing the number of pixels of prohibited state in IWM. In relation to reference patterns the pixel of prohibited state made partially prohibited state of no connected state using which is not included common and feature regions by each reference patterns.

  • PDF

Emotion Recognition using Facial Thermal Images

  • Eom, Jin-Sup;Sohn, Jin-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.427-435
    • /
    • 2012
  • The aim of this study is to investigate facial temperature changes induced by facial expression and emotional state in order to recognize a persons emotion using facial thermal images. Background: Facial thermal images have two advantages compared to visual images. Firstly, facial temperature measured by thermal camera does not depend on skin color, darkness, and lighting condition. Secondly, facial thermal images are changed not only by facial expression but also emotional state. To our knowledge, there is no study to concurrently investigate these two sources of facial temperature changes. Method: 231 students participated in the experiment. Four kinds of stimuli inducing anger, fear, boredom, and neutral were presented to participants and the facial temperatures were measured by an infrared camera. Each stimulus consisted of baseline and emotion period. Baseline period lasted during 1min and emotion period 1~3min. In the data analysis, the temperature differences between the baseline and emotion state were analyzed. Eyes, mouth, and glabella were selected for facial expression features, and forehead, nose, cheeks were selected for emotional state features. Results: The temperatures of eyes, mouth, glanella, forehead, and nose area were significantly decreased during the emotional experience and the changes were significantly different by the kind of emotion. The result of linear discriminant analysis for emotion recognition showed that the correct classification percentage in four emotions was 62.7% when using both facial expression features and emotional state features. The accuracy was slightly but significantly decreased at 56.7% when using only facial expression features, and the accuracy was 40.2% when using only emotional state features. Conclusion: Facial expression features are essential in emotion recognition, but emotion state features are also important to classify the emotion. Application: The results of this study can be applied to human-computer interaction system in the work places or the automobiles.

Development of a Hybrid Recognition System Using Biometrics to Manage Smart Devices based on Internet of Things

  • Ban, Ilhak;Jo, Seonghun;Park, Haneum;Um, Junho;Kim, Se-Jin
    • Journal of Integrative Natural Science
    • /
    • v.11 no.3
    • /
    • pp.148-153
    • /
    • 2018
  • In this paper, we propose a hybrid-recognition system to obtain the state information and control the Internet of Things (IoT) based smart devices using two recognitions. First, we use a facial recognition for checking the owner of the mobile devices, i.e., smartphones, tablet PCs, and so on, and obtaining the state information of the IoT based smart devices, i.e., smart cars, smart appliance, and so on, and then we use a fingerprint recognition to control them. Further, in the conventional system, the message of the state and control information between the mobile devices and smart devices is only exchanged through the cellar mobile network. Thus, we also propose a direct communication to reduce the total transmission time. In addition, we develop a testbed of the proposed system using smartphones, desktop computers, and Arduino vehicle as one of the smart devices. We evaluate the total transmission time between the conventional and direct communications and show that the direct communication with the proposed system has better performance.