• Title/Summary/Keyword: state prediction

Search Result 1,493, Processing Time 0.028 seconds

Copula entropy and information diffusion theory-based new prediction method for high dam monitoring

  • Zheng, Dongjian;Li, Xiaoqi;Yang, Meng;Su, Huaizhi;Gu, Chongshi
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.143-153
    • /
    • 2018
  • Correlation among different factors must be considered for selection of influencing factors in safety monitoring of high dam including positive correlation of variables. Therefore, a new factor selection method was constructed based on Copula entropy and mutual information theory, which was deduced and optimized. Considering the small sample size in high dam monitoring and distribution of daily monitoring samples, a computing method that avoids causality of structure as much as possible is needed. The two-dimensional normal information diffusion and fuzzy reasoning of pattern recognition field are based on the weight theory, which avoids complicated causes of the studying structure. Hence, it is used to dam safety monitoring field and simplified, which increases sample information appropriately. Next, a complete system integrating high dam monitoring and uncertainty prediction method was established by combining Copula entropy theory and information diffusion theory. Finally, the proposed method was applied in seepage monitoring of Nuozhadu clay core-wall rockfill dam. Its selection of influencing factors and processing of sample data were compared with different models. Results demonstrated that the proposed method increases the prediction accuracy to some extent.

Energy analysis-based core drilling method for the prediction of rock uniaxial compressive strength

  • Qi, Wang;Shuo, Xu;Ke, Gao Hong;Peng, Zhang;Bei, Jiang;Hong, Liu Bo
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 2020
  • The uniaxial compressive strength (UCS) of rock is a basic parameter in underground engineering design. The disadvantages of this commonly employed laboratory testing method are untimely testing, difficulty in performing core testing of broken rock mass and long and complicated onsite testing processes. Therefore, the development of a fast and simple in situ rock UCS testing method for field use is urgent. In this study, a multi-function digital rock drilling and testing system and a digital core bit dedicated to the system are independently developed and employed in digital drilling tests on rock specimens with different strengths. The energy analysis is performed during rock cutting to estimate the energy consumed by the drill bit to remove a unit volume of rock. Two quantitative relationship models of energy analysis-based core drilling parameters (ECD) and rock UCS (ECD-UCS models) are established in this manuscript by the methods of regression analysis and support vector machine (SVM). The predictive abilities of the two models are comparatively analysed. The results show that the mean value of relative difference between the predicted rock UCS values and the UCS values measured by the laboratory uniaxial compression test in the prediction set are 3.76 MPa and 4.30 MPa, respectively, and the standard deviations are 2.08 MPa and 4.14 MPa, respectively. The regression analysis-based ECD-UCS model has a more stable predictive ability. The energy analysis-based rock drilling method for the prediction of UCS is proposed. This method realized the quick and convenient in situ test of rock UCS.

Mine water inrush characteristics based on RQD index of rock mass and multiple types of water channels

  • Jinhai Zhao;Weilong Zhu;Wenbin Sun;Changbao Jiang;Hailong Ma;Hui Yang
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.215-229
    • /
    • 2024
  • Because of the various patterns of deep-water inrush and complicated mechanisms, accurately predicting mine water inflows is always a difficult problem for coal mine geologists. In study presented in this paper, the water inrush channels were divided into four basic water diversion structures: aquifer, rock fracture zone, fracture zone and goaf. The fluid flow characteristics in each water-conducting structure were investigated by laboratory tests, and multistructure and multisystem coupling flow analysis models of different water-conducting structures were established to describe the entire water inrush process. Based on the research of the water inrush flow paths, the analysis model of different water inrush space structures was established and applied to the prediction of mine water inrush inflow. The results prove that the conduction sequence of different water-conducting structures and the changing rule of permeability caused by stress changes before and after the peak have important influences on the characteristics of mine water-gushing. Influenced by the differences in geological structure and combined with rock mass RQD and fault conductivity characteristics and other mine exploration data, the prediction of mine water inflow can be realized accurately. Taking the water transmitting path in the multistructure as the research object of water inrush, breaking through the limitation of traditional stratigraphic structure division, the prediction of water inflow and the estimation of potentially flooded area was realized, and water bursting intensity was predicted. It is of great significance in making reasonable emergency plans.

A Basic Study on Development of a Tracking Module for ARPA system for Use on High Dynamic Warships

  • Njonjo, Anne Wanjiru;Pan, Bao-Feng;Jeong, Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.40 no.2
    • /
    • pp.83-87
    • /
    • 2016
  • The maritime industry is expanding at an alarming rate hence there is a perpetual need to improve situation awareness in the maritime environment using new and emerging technology. Tracking is one of the numerous ways of enhancing situation awareness by providing information that may be useful to the operator. The tracking module designed herein comprises determining existing states of high dynamic target warship, state prediction and state compensation due to random noise. This is achieved by first analyzing the process of tracking followed by design of a tracking algorithm that uses ${\alpha}-{\beta}-{\gamma}$ tracking filter under a random noise. The algorithm involves initializing the state parameters which include position, velocity, acceleration and the course. This is then followed by state prediction at each time interval. A weighted difference of the observed and predicted state values at the $n^{th}$ observation is added to the predicted state to obtain the smoothed (filtered) state. This estimation is subsequently employed to determine the predicted state in the next radar scan. The filtering coefficients ${\alpha}$, ${\beta}$ and ${\gamma}$ are determined from a pre-determined value of the damping parameter, ${\xi}$. The smoothed, predicted and the observed positions are used to compute the twice distance root mean square (2drms) error as a measure of the ability of the tracking module to manage the noise to acceptable levels.

Prediction of Steady-state Strip Profile during Hot Rolling - PartⅡ: Development of a Mathematical Model (열연 공정 정상상태 판 프로파일 예측 - PartⅡ: 수식 모델 개발)

  • Lee, J. S.;Hwang, S. M.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.61-66
    • /
    • 2016
  • In the current study, we present a new model for the prediction of the strip profile and the residual stresses. This new approach is an analytical model that predicts the residual stresses from the effect of post-deformation. Since the residual stress cannot exceed the yield strength of the material, post-yielding may possibly occur in the post-deformation zone prior to the strip reaching the steady-state zone. The prediction accuracy of the proposed model is examined through comparison with the predictions from 3-D finite element (FE) simulations.

Modified Disturbed State Concept for Dynamic Behaviors of Fully Saturated Sands (포화사질토의 동적거동규명을 위한 수정 교란상태개념)

  • 최재순;김수일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.107-114
    • /
    • 2003
  • There are many problems in the prediction of dynamic behaviors of saturated soils because undrained excess pore water pressure builds up and then the strain softening behavior is occurred simultaneously. A few analytical constitutive models based on the effective stress concept have been proposed but most models hardly predict the excess pore water pressure and strain softening behaviors correctly In this study, the disturbed state concept (DSC) model proposed by Dr, Desai was modified to predict the saturated soil behaviors under the dynamic loads. Also, back-prediction program was developed for verification of modified DSC model. Cyclic triaxial tests were carried out to determine DSC parameters and test result was compared with the result of back-prediction. Through this research, it is proved that the proposed model based on the modified disturbed state concept can predict the realistic soil dynamic characteristics such as stress degradation and strain softening behavior according to dynamic process of excess pore water pressure.

  • PDF

The Comparative Study of the Modalities of '-keyss' and '-(u)l kes' in Korean (`-겠`과 `-을 것`의 양태 비교 연구)

  • Yeom Jae-Il
    • Language and Information
    • /
    • v.9 no.2
    • /
    • pp.1-22
    • /
    • 2005
  • In this paper I propose the semantics of two modality markers in Korean, keyss and (u)1 kes. I compare the two modality markers with respect to some properties. First, keyss is used to express logical necessity while (u)1 kes can be used to express a simple prediction as well. Second, keyss expresses some logical conclusion from the speaker's own information state without claiming it is true. On the other hand, (u)1 kes expresses the claim that the speaker's prediction will be true. Third, the prediction of keyss is non-monotonic: it can be reversed without being inconsistent. However, that of (u)1 kes cannot. Fourth, (u)1 kes can be used freely in epistemic conditionals, but keyss cannot. Finally, when keyss is used, the prediction cannot be repeated. The prediction from the use of (u)1 kes can be repeated. To account for these differences, I propose that keyss is used when the speaker makes a purely logical presumption based on his/her own information state, and that (u)1 kes is used to make a prediction which is asserted to be true. This proposal accounts for all the differences of the two modality markers.

  • PDF

DATCN: Deep Attention fused Temporal Convolution Network for the prediction of monitoring indicators in the tunnel

  • Bowen, Du;Zhixin, Zhang;Junchen, Ye;Xuyan, Tan;Wentao, Li;Weizhong, Chen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.601-612
    • /
    • 2022
  • The prediction of structural mechanical behaviors is vital important to early perceive the abnormal conditions and avoid the occurrence of disasters. Especially for underground engineering, complex geological conditions make the structure more prone to disasters. Aiming at solving the problems existing in previous studies, such as incomplete consideration factors and can only predict the continuous performance, the deep attention fused temporal convolution network (DATCN) is proposed in this paper to predict the spatial mechanical behaviors of structure, which integrates both the temporal effect and spatial effect and realize the cross-time prediction. The temporal convolution network (TCN) and self-attention mechanism are employed to learn the temporal correlation of each monitoring point and the spatial correlation among different points, respectively. Then, the predicted result obtained from DATCN is compared with that obtained from some classical baselines, including SVR, LR, MLP, and RNNs. Also, the parameters involved in DATCN are discussed to optimize the prediction ability. The prediction result demonstrates that the proposed DATCN model outperforms the state-of-the-art baselines. The prediction accuracy of DATCN model after 24 hours reaches 90 percent. Also, the performance in last 14 hours plays a domain role to predict the short-term behaviors of the structure. As a study case, the proposed model is applied in an underwater shield tunnel to predict the stress variation of concrete segments in space.

Tree-based Approach to Predict Hospital Acquired Pressure Injury

  • Hyun, Sookyung;Moffatt-Bruce, Susan;Newton, Cheryl;Hixon, Brenda;Kaewprag, Pacharmon
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.8-13
    • /
    • 2019
  • Despite technical advances in healthcare, the rates of hospital-acquired pressure injury (HAPI) are still high although many are potentially preventable. The purpose of this study was to determine whether tree-based prediction modeling is suitable for assessing the risk of HAPI in ICU patients. Retrospective cohort study has been carried out. A decision tree model was constructed with Age, Weight, eTube, diabetes, Braden score, Isolation, and Number of comorbid conditions as decision nodes. We used RStudio for model training and testing. Correct prediction rate of the final prediction model was 92.4 and the Area Under the ROC curve (AUC) was 0.699, which means there is about 70% chance that the model is able to distinguish between HAPI and non-HAPI. The results of this study has limited generalizability as the data were from a single academic institution. Our research finding shows that the data-driven tree-based prediction modeling may potentially support ICU sensitive risk assessment for HAPI prevention.