• Title/Summary/Keyword: state diagram

Search Result 365, Processing Time 0.028 seconds

Analysis of Failure Phenomena in Uni-axial Tension Tests of Friction Stir Welded AA6111-T4, AA5083-H18 and DP-Steel (마찰교반용접(FSW) 된 알루미늄 합금(AA6111-T4, AA5083-H18) 및 DP강 판재의 인장 실험시 파단 현상 해석)

  • Park, S.;Um, K.;Ma, N.;Ahn, K.;Chung, K.H.;Kim, Chong-Min;Okamoto, Kazutaka;Wagoner, R.H.;Chung, K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.258-261
    • /
    • 2007
  • Failure phenomena in uni-axial tension test were experimentally and numerically investigated for AA6111-T4, AA5083-H18 and DP-Steel, which were friction-stir welded with the same and different thicknesses. Forming limit diagram(FLD) was measured using hemispherical dome stretching tests for base materials and also predicted by Hill's bifurcation and M-K theories for welded areas. Finite element simulations well predicted hardening behaviors, failure locations as well as failure patterns for the uni-axial tension tests especially utilizing very fine meshes and FLD along with stress softening.

  • PDF

Transformation from IDEF4 models to UML models (IDEF4 모델에서 UML 모델로의 변환)

  • Yoo, Moon-Sung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.5
    • /
    • pp.83-92
    • /
    • 2011
  • IDEF is a widely used methodology for traditional structured software development. As object-oriented softwares are widely used, an object-oriented version of IDEF, IDEF4, is developed. UML is de facto standard for object-oriented software development methods. Whereas IDEF is widely used for CALS/EC, UML is used for general object-oriented software development. Most software developers are not familiar with IDEF4 but familiar with UML. Moreover, UML has many CASE tools. So we can develop software efficiently if we convert IDEF4 model to UML model. In this paper, we transform IDEF4 models to UML models. We explain the rules and methods to convert IDEF4 model to UML model and applied the transform methods and rules to a case study.

Essential Logical Model Approach in Analysis and Design for Patient Management and Accounting System : A Case Study (본질적 논리모형에 근거한 원무관리시스템의 분석과 설계)

  • 김명기
    • Health Policy and Management
    • /
    • v.4 no.2
    • /
    • pp.111-125
    • /
    • 1994
  • In developing total hospital information system, large amount of time and expense are to be spent while its results are likely to lead itself to end-users' dissatisfaction. Some of the main complaints on the part of end-users come from insufficient consideration of end-users environment as well as inappropriate representation of their requirement in the system alalysis and design. This papre addresses some advantages of Essential Logical Modeling Process for better analysis and design, explaining by example the developmental process of the Patent Management and Accounting System for a tertiary care hospital. In the case, the Essential Model, suggested by McMenamin and Palmer, proved to be an effective tool for clear separation of analysis and design phase and for better communication among system developers and with end-users. The modeling process itself contributed to better program modularity as well, shown in a Structured Chart. Difficulties in learning how to identify' essential activities' for the modeling practice were experienced in the beginnins stage, which were, however, overcome by elaborating some heuristic guideling and by rdferring to necessary tools including State Transition Diagram, Control Flow Diagram, and so many. While full evaluation of the Essential Model usag remains to wait till the completion of the case project, its strengt in making clear distinction between analysis and design phase was enough to be attractive to system analysts. The model concepts are open to many further application fields, particularly such areas as business re engineering, process remodeling, office automation, and organizational restructuring.

  • PDF

Water Quality Assesment of the Lower Yeongsan River System (영산강 하류권역 하천수의 수질평가)

  • Youn, Seok-Tai;Koh, Yeong-Koo;Oh, Kang-Ho;Moon, Byoung-Chan;Kim, Hai-Gyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.4
    • /
    • pp.259-270
    • /
    • 2003
  • To investigate the water quality and the pollution state of lower Yeongsan river system, 38 water samples were taken from the main stream of the Yeongsan river, Gomakwon and Hampyeong streams of the system in dry and flood seasons, May and August, 2001. The Yeongsan river is typically natural in accordance with pH-& diagram. But the chemistry based on Piper's diagram indicates that the river is influenced by seawater. BOD increases as the sampling sites are approaching the downstream in Gomakwon and Hampyeong streams overwhelming WQS V grade of 12.40mg/l. T-N and T-P of the river are mainly loaded not in above branch streams but in the main stream of the river, which are caused by manure for farming, domestic animal discharges and life-sewage, in possible. Meanwhile, heavy metal contents are below WQS or not detect in whole water samples. So, it shows that the above river waters be polluted by not industrial but life/agricultural foul waters.

Characterization of Hardenability and Mechanical Properties of B-Bearing Microalloyed Steels for Cold Forging (붕소함유 냉간단조용 비조질강의 경화능 및 기계적 특성평가)

  • Park H. G.;Nam N. G.;Choi H. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.395-399
    • /
    • 2004
  • Four microalloyed steels containing B were investigated in terms of hardenability, mechanical properties and microstructure depending upon the cooling rates in order to develop the steel grade for the cold forged fasners. The alloy with the largest DI value among 4 alloys, which contains $0.12\%\;C,\;1.54\%\;Mn,\;0.65\%\;Cr,\;0.11\%V,\;0.040\%Ti\;and\;0.0033\%B$, showed the larest shift to the right hand side in the TTT diagram, implying the wide allowable cooling rate range subsequent to hot rolling in long bar processing, Mechanical tests indicated that yield strength are dependent upon the DI value in water quenched specimens but other properties showed almost the same values. In the same grade of steel, the increase in cooling rates causes the decrease in elongation but the increase in strength, reduction of area and Charpy impact values. Microstructural examination in steel grade with the larest DI values revealed martensitic structure In the water quenched state, a mixture of martensite and bainite in the oil quenched, and ferrite + pearlite in the air cooled and the forced air cooled but the latter showed finer microstructure.

  • PDF

Analysis of Failure Phenomena in Uni-axial Tension Tests of Friction Stir Welded AA6111-T4, AA5083-H18 and DP-Steel (마찰교반용접(FSW) 된 알루미늄 합금(AA6111-T4, AA5083-H18) 및 DP강 판재의 인장 실험시 파단 현상 해석)

  • Park, S.;Um, K.;Ma, N.;Ahn, K.;Chung, K.H.;Kim, Chong-Min;Okamoto, Kazutaka;Wagoner, R.H.;Chung, K.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.304-308
    • /
    • 2007
  • Failure phenomena in uni-axial tension test were experimentally and numerically investigated for AA6111-T4, AA5083-H18 and DP-Steel, which were friction-stir welded with the same and different thicknesses. Forming limit diagram(FLD) was measured using hemispherical dome stretching tests for base materials and also predicted by Hill's bifurcation and M-K theories for welded areas. Finite element simulations well predicted hardening behaviors, failure locations as well as failure patterns for the uni-axial tension tests especially utilizing very fine meshes and FLD along with stress softening.

Improvement Strategy of System Unavailability by Review of Logical Structure and Reliability Importance of Reliability Block Diagram (RED) and Fault Tree Analysis (FTA) (RBD와 FTA의 논리구조와 신뢰성 중요도의 고찰에 의한 시스템 비시간가동률 개선방안)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.3
    • /
    • pp.45-53
    • /
    • 2011
  • The research proposes seven elimination rules of redundant gates and blocks in Fault Tree Analysis (FTA) and Reliability Block Diagram (RBD). The computational complexity of cut sets and path sets is NP-hard. In order to reduce the complexity of Minimal Cut Set (MCS) and Minimal Path Set (MPS), the paper classifies generation algorithms. Moreover, the study develops six implementation steps which reflect structural importance (SI) and reliability importance (RI) from Reliability Centered Maintenance (RCM) that a priority of using the functional logic among components is to reduce (improve) the system unavailability (or availability). The proposed steps include efficient generation of state structure function by Rare Event Enumeration (REA). Effective use of importance measures, such as SI and ill measures, is presented based on the number and the size of MCS and MPS which is generated from the reference[5] of this paper. In addition, numerical examples are presented for practitioners to obtain the comprehensive understanding of six steps that is proposed in this research.

Forming Limit Prediction in Tube Hydroforming Processes by Using the FEM and FLSD (유한요소법과 FLSD를 이용한 관재 하이드로포밍 공정에서의 성형 한계 예측)

  • Kim S. W.;Kim J.;Lee J. H.;Kang B. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.527-532
    • /
    • 2005
  • Among the failure modes which can occur in tube hydroforming such as wrinkling, bursting or buckling, the bursting by local instability under excessive tensile stresses is irrecoverable phenomenon. Thus, the accurate prediction of bursting condition plays an important role in producing the successfully hydroformed part without any defects. As the classical forming limit criteria, strain-based forming limit diagram (FLD) has widely used to predict the failure in sheet metal forming. However, it is known that the FLD is extremely dependant on strain path throughout the forming process. Furthermore, The application of FLD to hydroforming process, where strain path is no longer linear throughout forming process, may lead to misunderstanding for fracture initiation. In this work, stress-based forming limit diagram (FLSD), which is strain path-independent and more general, was applied to prediction of forming limit in tube hydroforming. Combined with the analytical FLSD determined from plastic instability theory, finite element analyses were carried out to find out the state of stresses during hydroforming operation, and then FLSD is utilized as forming limit criterion. In addition, the approach is verified by a series of bulge tests in view of bursting pressure and shows a good agreement. Consequently, it is shown that the approach proposed in this paper will provide a feasible method to satisfy the increasing practical demands for judging the forming severity in hydroforming processes.

Forming Limit Prediction in Tube Hydroforming Processes by using the FEM and ELSD (유한요소법과 FLSD를 이용한 관재 하이드로포밍 공정에서의 성형 한계 예측)

  • Kim S. W.;Kim J.;Lee J. H.;Kang B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.92-96
    • /
    • 2005
  • Among the failure modes which can be occurred in tube hydroforming such as wrinkling, bursting or buckling, the bursting by local instability under excessive tensile stresses is irrecoverable phenomenon. Thus, the accurate prediction of bursting condition plays an important role in producing the successfully hydroformed part without any defects. As the classical forming limit criteria, strain-based forming limit diagram has widely used to predict the failure in sheet metal forming. However, it is known that the FLD is extremely dependant on strain path throughout the forming process. Furthermore, the path-dependent limitation of FLD makes the application to hydroforming process, where strain path is no longer linear throughout forming process, more careful. In this work, stress-based forming limit diagram (FLSD), which is strain path-independent and more general, was applied to prediction of forming limit in tube hydroforming. Combined with the analytical FLSD determined from plastic instability theory, finite element analyses were carried out to find out Ihe state of stresses during hydroforming operation, and then FLSD is utilized as forming limit criterion. In addition, the approach is verified with a series of bulge tests in view of bursting pressure and shows a good agreement. Consequently, it is shown that the approach proposed in this paper will provide a feasible method to satisfy the increasing practical demands for judging the farming severity in hydroforming processes.

  • PDF

Development of a Simulation Model based on CAN Data for Small Electric Vehicle (소형 전기자동차 CAN 데이터 기반의 시뮬레이션 모델 개발)

  • Lee, Hongjin;Cha, Junepyo
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.155-160
    • /
    • 2022
  • Recently, major developed countries have strengthened automobile fuel efficiency regulations and carbon dioxide emission allowance standards to curb climate change caused by global warming worldwide. Accordingly, research and manufacturing on electric vehicles that do not emit pollutants during actual driving on the road are being conducted. Several automobile companies are producing and testing electric vehicles to commercialize them, but it takes a lot of manpower and time to test and evaluate mass-produced electric vehicles with driving mileage of more than 300km on a per-charge. Therefore, in order to reduce this, a simulation model was developed in this study. This study used vehicle information and MCT speed profile of small electric vehicle as basic data. It was developed by applying Simulink, which models the system in a block diagram method using MATLAB software. Based on the vehicle dynamics, the simulation model consisted of major components of electric vehicles such as motor, battery, wheel/tire, brake, and acceleration. Through the development model, the amount of change in battery SOC and the mileage during driving were calculated. For verification, battery SOC data and vehicle speed data were compared and analyzed using CAN communication during the chassis dynamometer test. In addition, the reliability of the simulation model was confirmed through an analysis of the correlation between the result data and the data acquired through CAN communication.