• Title/Summary/Keyword: starved cell

Search Result 48, Processing Time 0.024 seconds

Effect of pH and Nisin on Heat Resistance of Listeria monocytogenes Scott A (Listeria monocytogenes의 열저항성에 미치는 pH와 Nisin의 효과)

  • 이신호;조현순
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.3
    • /
    • pp.200-206
    • /
    • 1993
  • The effect of pH (7, 5 and 4) and nisin (100 and 200IU/ml) on heat resistance of Listeria monocytogenes Scott A were determined using citrate-phosphate buffer system. Heat resistance of vegetative and starved cell was decreased as pH value was lower at 65 and 72C. Starved L. monocytogenes was more resistant than vegetative cell at both temperature. Heat resistance of vegetative and starved cell was decreased significantly with treatment of nisin. The effect of nisin was increased significantly at low pH(5, 4). Adherent microcolony was more resistant to heat and nisin than planktonic cell. Contamination of L. monocytogenes may be prevent by using nisin in food and food processing environments.

  • PDF

Heat Resistance of Vegetative and Starved Listeria monocytogenes Sott A (Listeria monocytogenes Scott A의 세포상태에 따른 열 저항성)

  • 이신호;손수정
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.2
    • /
    • pp.176-180
    • /
    • 1993
  • Survival and heat resistance of Listeria monocytogenes Scott A in various nutritional environments and cell type on stainless steel were determined. Viable cell of L. monocytogenes Scott A was most rapidly decreased in phosphate buffer among various media such as NSM (30 g TSB/1 l D.W.), LNM (2 g TSB/1 l D.W.) and phosphate buffer (pH=7) during incubation at 21 and 35C but survived for 15 days at 21C. Vegetative and starved L. monocytogenes Scott A were survived after heat treatment for 5 min at 65C while not detected at 72C.

  • PDF

Cell Cycle Analysis of Bovine Cultured Somatic Cells by Flow Cytometry

  • H.T. Cheong;D.J. Kwon;Park, J.Y.;J.W. Cho;Y.H. Yang;Park, T.M.;Park, C.K.;B.K. Yang;Kim, C.I.
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.69-69
    • /
    • 2001
  • The cell cycle phase in which donor nuclei exist prior to nuclear transfer is an important factor governing developmental rates of reconstituted embryos. It was suggested that quiescent G0 and cycling G1 cells could support normal development of reconstituted embryos. In a quest of optimized donor nuclei treatment prior to nuclear transfer, this study was undertaken to examine the cell cycle characteristics of bovine fetal and adult somatic cells when cultured under a variety of culture treatments and the cell cycle change with the lapse of time after trypsinization. This was archived by measuring the DNA content of cells using flow cytometry, Cultured fetal fibroblast cells, adult skin and muscle cells, and cumulus cells were divided by 3 culture treatments; 1) grown to 60-70% confluency (cycling), 2) serum starved culture, 3) culture to confluency. Trypsinized cells were fixed by 70% ethanol and stained with propidium iodide. For one experiment, trypsinized cells were resuspended in DMEM+10% FBS and incubated for 1.5, 3 and 6 h with occasional shaking before ethanol fixation. Cell cycle phases were determined by flow cytometry enabling calculation of percentages of G0+G1, S and G2+M. The majority of cells were in G0+Gl stage regardless of origin of cells. Cultures that were serum starved or cultured to confluency contained significantly (P<0.05) higher percentages of cells in G0+G1 (89.5-95.4%). For every cell lines and culture treatments, percentages of cells in existing in G0+G1 increased with decreasing of the cell size from large to small. In the serum starved and confluency groups, about 98% of small cells were in G0+G1 Serum starved culture contained higher percentages of small-sized cells (38.5-66.9%) than cycling and confluent cultures regardless of cell lines (P<0.05). After trypsinization of fetal fibroblast and adult skin cells that were serum starved and cultured to confluency, the percentages of cells in G0+G1 significantly increased by incubation for 1.5(95.7-99.5%) and 3.0 h (95.9-98.6%). The results suggest that the efficient synchronization of bovine somatic cells in G0+G1 for nuclear transfer can be established by incubation for a limited time period after trypsinization of serum starved or confluent cells.

  • PDF

Studies on the cellular metabolism in microorganisms as influenced by gamma-irradiation.(V) "On the membrane permeability changes and leakage of celluar constituents of irradiated yeast cell" (미생물의 세포생리에 미치는 전이방사선의 영향에 관한 연구 (제 5 ) "-의 과성에 대한 $\gamma$-의 영향에 대하여")

  • 김종협;전세열;김희자
    • Korean Journal of Microbiology
    • /
    • v.6 no.2
    • /
    • pp.54-62
    • /
    • 1968
  • The effect of gamma-ray on yeast cells Sacch. cerevisiae, and the leakage of cellular constituents such as carbohydrates, ribose, amino acids, inorganic phosphates and organic phosphates have been studied. The samples of yeast cells washed throughly and starved intensively, radiation effects were compared with those of control (un-starved), the irradiation dose rates are in the range from 24 Kr. up. to 480, Kr. The loss of 260m$\mu$. absorbing material, are also observed. Mechanisms of membrane damage by gamma-irradiation are discussed corelating to permeability changes and loss of substances, then active and passive transport process are also under considerations in discussion. The experimental results are as follows, 1. Carbohydrates of yeast cell leak out by gamma-irradiation, and amounts of loss increase proportionally as the increasing of radiation dose, curve of carbohydrates loss in starved cells is parallel with those of non-starved cells. 2. Ribose leak out less than that of carbohydrate from irradiated cell, the dose response curve of loss is straight and proportional to the increasing of radiation doses, slope of the curve is much lower than of carbohydrates. 3. Amino acids also leak out and the curve of losses to radiation is not proportional, it is revealed that there are little losses from yeast at lower doses of irradiation. 4. The losses of inorganic phosphates increase unproportionally to the increasing of irradiation doses, there are little leakage at the lower doses of irradiation. The losses of organic phosphates increase proportionally to the increasing of irradiation doses, and the amount of losses are much more than that of inorganic phosphate at lower doses of irradiation. 5. Leakage from irradiated yeast cells was shown to be due to passive transport process not an energy requiring process of ion transport. 6. Loss of 260 m$\mu$. absorbing material is little more than that of control yeast by the gamma-irradiation dose of 120K.r. and 240K.r.

  • PDF

Bovine Nuclear Transfer using Ear Skin Fibroblast Cells Derived from Serum Starvation and Passage Numbers

  • Yang, Byoung-Chul;Im, Gi-Sun;Park, Jin-Ki;Kim, Hyun-Ju;Chang, Won-Kyung
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.64-64
    • /
    • 2001
  • To facilitate the widespread application of somatic cell cloning, improvements in blastocyst production efficiency and subsequent fetal viability are required. Area where technical improvements are needed include donor cell treatments, starvation and passage numbers. This study was carried out to investigate the effect of serum-starvation and passage on the development of ear skin fibroblast cells cloned embryos. A skin biopsy was obtained from the ear of a 2-year-old Korean Hanwoo female. The cells were cultured in 10% FBS+DMEM up to 2-3 months(up to 10 passages) and then used. In Experiment 1, the Korean bovine Ear Skin Fibroblast cells (KbESF) were either serum starved (culture in 0.05% FBS+DMEM) or serum fed (10% FBS+DMEM) for 4-7 days Prior to NT In Experiment 2, the KbESF cells used for nuclear transfer in these experiments were from passages 2 to 10. The development of 208 nuclear transfer (NT) embryos reconstructed from either serum starved or serum fed ear skin fibroblast was assessed. NT embryos reconstructed from serum starved and serum fed cells showed the same developmental rate (cleavage 80.16 vs. 85.37%; blastocyst 20.63 vs. 19,51%). The development of 590 nuclear transfer (NT) embryos reconstructed from passage 2 to 10 was assessed. We observed the same developmental rates for embryos derived from later Passages as compared with those embryos from early passages(blastocyst from 16.69 to 27.91%, average 20.17%). There was no significant difference between serum-fed and serum-starved donor cells. We observed no difference in developmental rates for embryos derived from 2 to 10 passages. These data show that prolonged culture and serum starvation does not affects the cloning competence of adult somatic cells.

  • PDF

Evaluation of apoptosis after ionizing radiation in feeding and starving rats

  • Lee, Jae-Hyun;Cho, Kyung-Ja;Hong, Seok-Il;Park, Min-Kyung
    • Korean Journal of Veterinary Pathology
    • /
    • v.2 no.1
    • /
    • pp.37-46
    • /
    • 1998
  • It has been known that $\gamma$-irradiation usually induces cell death in regenerating stem cell in normal tissues like skin, intestine and hematopoietic organ. The experiment were carried out to evaluate the early response of radiation injury in radiosensitive and intermediate radiosensitive tissues in feeding and starving rats with the doses of 3.5 and 7.0 Gy. The results of the study showed that the histological phenomenon was apoptosis in the doses of the radiation as the early response of tissue injury. Apoptosis were showed organ-specific and cellular specific responses suggesting that the selection of apoptosis be exactly focused on highly renewal organs and cells. It was interesting that the rats starved for 72 hours prior to irradiation induced less apoptosis in liver than fed rats. As for cellular responses it appeared that apoptotic cells were mostly distributed in ductal or periportal cells in liver of feeding rats unlikely in liver of Starving rots which showed no difference in zonal distribution. In salivary gland apoptotic cells in fed rats were highly induced in intercalating and ductal cell population than in acinar cell population although unlikely in starved rats. This study showed the value of apoptosis using the detection system of TUNEL for evaluating cellular damage after radiation injury and the diminished effect of starvation on cell damage after ionizing irradiation.

  • PDF

Establishment of bovine Fetal Fibroblasts Line for Production of Cloned Calves in Korean Native Cattle: The Effects of Culture Period and Various Cell Size on the Efficiency of Nuclear Transfer (복제 한우 생산을 위한 Bovine Fetal Fibroblasts의 이용에 관한 연구: 공여핵원의 배양기간 및 세포 크기가 핵이식의 효율에 미치는 영향)

  • 황우석;박종임;조종기;김기연;신수정;용환율;이병천
    • Journal of Embryo Transfer
    • /
    • v.14 no.2
    • /
    • pp.93-97
    • /
    • 1999
  • The development potential of bovine somatic cells was evaluated using nuclear transfer. A single donor cell derived from fetus of HanWoo(Korean Native Cattle) was selected and deposited into perivitelline space of each enucleated oocyte before electrical fusion and activation. Nuclei of donor cells starved for 7 days (37%) tended to support the development of reconstitute embryo the blastocyst stage better than those of donor cells starved 3, 14 and 30 days. The cleavage rate was significantly lower(P<0.05) in reconstitute embryos derived from large size donor cells(51.2%), than those from small medium size donor cells(76.6 and 73.5, respectively). The developmental rate to blastocyst of reconstructed embryos from medium size donor cells was higher than those from small and medium size donor cells. This study demonstrates that an appropriate culture period for induction into quiescent stage and the size of donor cells effect on the efficiency of nuclear transfer using cultured bovine cells.

  • PDF

Identification of Sugar-Responsive Genes and Discovery of the New Functions in Plant Cell Wall

  • Lee, Eun-Jeong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2007.04a
    • /
    • pp.65-73
    • /
    • 2007
  • The objective of this study is to understand how regulatory mechanisms respond to sugar status for more efficient carbon utilization and source-sink regulation in plants. So, we need to identify and characterize many components of sugar-response pathways for a better understanding of sugar responses. For this end, genes responding change of sugar status were screened using Arabidpsis cDNA arrays, and confirmed thirty-six genes to be regulated by sucrose supply in detached leaves by RNA blot analysis. Eleven of them encoding proteins for amino acid metabolism and carbohydrate metabolism were repressed by sugars. The remaining genes induced by sugar supply were for protein synthesis including ribosomal proteins and elongation factors. Among them, I focused on three hydrolase genes encoding putative $\beta$-galactosidase, $\beta$-xylosidase, and $\beta$-glucosidase that were transcriptionally induced in sugar starvation. Homology search indicated that these enzymes were involved in hydrolysis of cell wall polysaccharides. In addition to my results, recent transcriptome analysis suggested multiple genes for cell wall degradation were induced by sugar starvation. Thus, I hypothesized that enzyme for cell wall degradation were synthesized and secreted to hydrolyze cell wall polysaccharides producing carbon source under sugar-starved conditions. In fact, the enzymatic activities of these three enzymes increased in culture medium of Arabidopsis suspension cells under sugar starvation. The $\beta$-galactosidase encoded by At5g56870 was identified as a secretory protein in culture medium of suspension cells by mass spectrometry analysis. This protein was specifically detected under sugar-starved condition with a specific antibody. Induction of these genes was repressed in suspension cells grown with galactose, xylose and glucose as well as with sucrose. In planta, expression of the genes and protein accumulation were detected when photosynthesis was inhibited. Glycosyl hydrolase activity against galactan also increased during sugar starvation. Further, contents of cell wall polysaccharides especially pectin and hemicellulose were markedly decreased associating with sugar starvation in detached leaves. The amount of monosaccharide in pectin and hemicellulose in detached leaves decreased in response to sugar starvation. These results supported my idea that cell wall has one of function to supply carbon source in addition to determination of cell shape and physical support of plant bodies.

  • PDF

Effect of Quiescent Treatment on Nuclear Remodeling and In Vitro Development of Nuclear Transfer Embryos Derived from Bovine Fetal Fibroblast Cells (세포의 휴면처리가 소 태아섬유아세포 유래 핵이식란의 핵상변화와 체외발육에 미치는 영향)

  • 최종엽;권대진;김정익;박춘근;양부근;정희태
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.2
    • /
    • pp.217-222
    • /
    • 2000
  • This study was conducted to investigate the effect of quiescent treatment of the donor cells on the nuclear remodeling and in vitro development of fetal fibroblast cell-cloned bovine embryos. Serum starved, confluent and nonquiescent cycling fetal fibroblast cells were transferred into the enucleated oocytes. About 20∼25% of nuclear transfer embryos fused with a serum starved or confluent cell extruded a polar body, which was slightly lower than that of nontreated control (36%). About 49∼51% of nuclear transfer embryos fused with a serum starved or confluent cell had a single chromatin clump, which was slightly higher than that of nontreated control (40%). The proportion of embryos with a single chromatin clump was significantly higher (P<0.01) in nuclear transfer embryos without showing a polar body (60.5%) than with a polar body (4.7%). Development rates to the blastocyst stage were 21.7% and 20.9% when serum starved and confluent cells were transferred, which were slightly higher than that of control (14.1 %). The result of this study suggests that quiescent treatment by serum starvation or growth to confluency of donor cells could increase the number of embryos with a normal chromatin structure, which results in increased in vitro development.

  • PDF

Study on Nucleo-Cytoplasmic Interaction by Somatic Cell Nuclear Transfer in Bovine (소 체내포 핵이식에 의한 핵-세포질 상호작용에 관한 연구)

  • 정희태;최종엽;박춘근;김정익;민동미
    • Journal of Embryo Transfer
    • /
    • v.15 no.1
    • /
    • pp.23-31
    • /
    • 2000
  • This study was conducted to investigate the effects of quiescent treatment of donor cells and activation treatment time of recipient cytoplasm on nuclear remodeling and in vitro development of somatic cell-cloned bovine embryos. Serum starved, confluent and nonquiescent cycling adult skin cells were teansferred into enucleated oocytes. Nuclear transfer oocytes were activated at 30 min, 1 and 2 hrs after electrofusion. Some nuclear transfer embryos(23% to 35%) extruded a polar body, which was not affected by quiescent treatment of donor cells and activiation time of recipient cytoplasm. About 68% of nuclear transfer embryos fused with a serum starved cells has a chromatin clump, but which was not different from embryos fused with confluent(51%) and nonquiescent(47%) cells. The proportion of embryos with a single chromatin clump was sightly increased when nuclear transfer embryos were activated within 30 min after fusion(69%) compared to those were activated at 1 and 2 hrs after fusion, but there was not significantly different. Development rates to the blastocyst stage were 8.6% and 15.9% when serum starved and confluent cells were transferred, which were higher than that of control group. Developmental rate to the blastocyst stage was higher in embryos were activated within 30 min after fusion (17.3%) compared to those of embryos were activated at 1 and 2 hrs after fusion (P<0.05). From the present result, it is suggested that quiescent treatment of donor cells and activation time of recipient cytoplasm can affect the in vitro development. Quiescent plasm activation within 30 min after fusion could increase the number of embryos with a normal chromation structure, which results in increased in vitro development.

  • PDF