• Title/Summary/Keyword: stars:temperature

Search Result 107, Processing Time 0.024 seconds

Dust Envelopes around Massive Young Stellar Objects

  • Suh, Kyung-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.329-334
    • /
    • 2008
  • We investigate the spectral energy distributions (SEDs) of Massive Young Stellar Objects (MYSOs) using the various infrared observational data including the Infrared Space Observatory (ISO) data. We model the dust envelopes around the stars using a radiative transfer model for spherically symmetric geometry. Comparing the model results with the observed SEDs of the two MYSOs (AFGL 4176 and AFGL 2591), we derive the relevant dust shell parameters including the dust opacity, the dust density distribution, and dust temperature distribution. We find that the spherical model can produce the SEDs roughly similar to the observations. We expect that the results would be helpful for making more realistic non-spherical dust envelope models for MYSOs.

A STUDY ON THE STELLAR PHYSICAL PARAMETERS

  • Lee, Sank-Gak;Kim, Ke-Young
    • Publications of The Korean Astronomical Society
    • /
    • v.8 no.1
    • /
    • pp.243-263
    • /
    • 1993
  • One hundred forty two digital spectra of 110 standard stars with 1 A resolution in ${\lambda}{\lambda}\;3000\;A\;{\sim}4150\;A$ region were analyzed to determine the spectral indices sensitive to the atmospheric parameters. The standard stars cover the temperature in the range of $T_eff$ from ${\sim}4000^{\circ}$ to ${\sim}7000^{\circ}\;K$ and the surface gravity in the range of log g from 0 to 5 and the metal abundance [Fe/H] from -2.7 to 0.4. We have derived physical parameters, theta(=T/5040), log g, and [Fe/H] for the standard stars using indices, P(38/93), Fe I(A), Fe I(B), SrII, and $H{\delta}$, with overall accuracies of 0.067, 0.617, and 0.466, respectively. However for some region of spectral type and metallicity, those can be obtained with better accuracies. Those indices are found to be useful especially for stellar gravity determination.

  • PDF

Chemical abundance study of two open cluster, IC 2391 and NGC 6475 : The abundance determination

  • Park, Keun-Hong;Lee, Sang-Gak;Kang, Won-Seok;Yoon, Tae-Seog
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.146.2-146.2
    • /
    • 2011
  • In this study, we have derived the abundances of several elements ? Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni - for the six F G K type stars in IC 2391 and the seven stars in NGC 6475. The spectra of those stars are taken from UVES POP archive data, of which resolution is 80,000. To derive the abundances of those elements, TAME (Tools for Automatic Measurement of Equivalent-widths), Kurucz stellar atmospheric model, and MOOG code are used. The stellar parameters (effective temperature, log g, metallicity, microturbulent velocity) are determined from the iron lines. The results provide the abundance differences of chemical elements between two open clusters, IC 2391 (a member of Gould Belt) and NGC 6475 (non-member of it), which would lead to better understanding about Gould Belt.

  • PDF

Pixel Intensity Histogram Method for Unresolved Stars: Case of the Arches Cluster

  • Shin, Jihye;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.58.2-58.2
    • /
    • 2014
  • The Arches cluster is a young (2-4 Myr), compact (~1 pc), and massive (${\sim}2{\times}10^4M_{\odot}$) star cluster located ~30 pc away from the Galactic center (GC) in projection. Being exposed to the extreme environment of the GC such as elevated temperature and turbulent velocities in the molecular clouds, strong magnetic fields, and larger tidal forces, the Arches cluster is an excellent target for understanding the effects of star-forming environment on the initial mass function (IMF) of the star cluster. However, resolving stars fainter than ~1 $M_{\odot}$ in the Arches cluster partially will have to wait until an extremely large telescope with adaptive optics in the infrared is available. Here we devise a new method to estimate the shape of the low-end mass function where the individual stars are not resolved, and apply it to the Arches cluster. This method involves histograms of pixel intensities in the observed images. We find that the initial mass function of the Arches cluster should not be too different from that for the Galactic disk such as the Kroupa IMF.

  • PDF

UV LINE EMISSIONS OF W UMa STARS (W UMa형 별들의 UV 방출선 연구)

  • 김용기;한동주
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.39-44
    • /
    • 2000
  • We reinvestigate UV line emissions of 44i Boo, W UMa, AW UMa and VW Cep, which are indicaters of chromospheric activity of these stars. C I, C II, C IV, Si IV lines show significant variation in orbital phase. Among those lines, the Line of C IV showed the strongest line flux. while other Si IV and N V lines showed relative low line intensities. 44i Boo emitted the strongest flux than other stars. UV light curves of target stars shoed UV maximum at phase around 0.2 an 0.8 Such UV emissions are generally believed to be observed at the active regions and contacting parts of the two stars due to the clear visibility at the phase 0.2 and 0.8. Total emissivity of four transitions lines lead to conclude that the activity of this region is 40 times larger than the quiet sun. It is obvious that the activity decrease according to increase period. We obtained also Mg II light curve of AW UMA and VW Cep. These stars showed more clearly phase-dependent light curves. We estimated effective temperature of two star, AW UMa and VW Cep, using by Mg II flux.

  • PDF

Determining the stellar parameters of solar-like stars using synthetic spectra

  • Kang, Won-Seok;Lee, Sang-Gak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.151.2-151.2
    • /
    • 2011
  • IGRINS (Immersion GRating INfrared Spectrometer) will provide the spectra with high-resolution and an instantaneous spectral coverage of H and K band in NIR region. Therefore, it is expected that the wide coverage of wavelength would make a production of an extensive NIR high-resolution spectra of standard stars as a prior program of IGRINS. As a counter part of these NIR spectra, we have planned to obtain the high-resolution spectra of those standard stars in optical band. These optical high-resolution spectra would give us an opportunity to produce the library of high-resolution stellar spectra covering from optical to NIR band, and to confirm the method to determine the stellar parameters and chemical abundances from the NIR high-resolution spectra. Before using the NIR high-resolution spectra, we have tested the method to determine the stellar parameters by comparing between the observed spectra and the synthetic spectra in optical band. In order to make the synthetic spectra, we have used the Kurucz ATLAS9 model grids and the SYNTH code described by Fiorella Castelli (http://wwwuser.oat.ts.astro.it/castelli/). For the cross-check against the parameters that would be derived from the NIR spectra, the stellar parameters such as effective temperature and surface gravity were determined using the optical spectra of the solar-like stars, as preliminary results.

  • PDF

Wilson-Bappu Effect: Extended to Surface Gravity

  • Park, Sunkyung;Kang, Wonseok;Lee, Jeong-Eun;Lee, Sang-Gak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2013
  • Wilson and Bappu found a tight correlation between the stellar absolute visual magnitude (MV) and the width of the Ca II K emission line for late-type stars in 1957. Here, we revisit the Wilson-Bappu relationship (hereafter, WBR) to claim that WBR can be an excellent indicator of stellar surface gravity of late-type stars as well as a distance indicator. We have measured the width (W) of the Ca II K emission line in high resolution spectra of 125 late-type stars, which were obtained with Bohyunsan Optical Echelle Spectrograph (BOES) and adopted from the UVES archive. Based on our measurement of the emission line width (W), we have obtained a WBR of $M_V=33.76-18.00{\log}W$. In order to extend the WBR to be a surface gravity indicator, the stellar atmospheric parameters such as effective temperature ($T_{eff}$), surface gravity (logg), metallicity ([Fe/H]), and micro-turbulence (${\xi}_{tur}$) have been derived from the self-consistent detailed analysis using the Kurucz stellar atmospheric model and the abundance analysis code, MOOG. Using these stellar parameters and logW, we found that ${\log}g=-5.85\;{\log}W+9.97\;{\log}T_{eff}-23.48$ for late-type stars.

  • PDF

UV ENERGY DISTRIBUTION OF AZ CASSIOPEIAE

  • Kang, Young-Woon
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.31-40
    • /
    • 1994
  • The IUE low dispersion spectra of AZ Cas have been analyzed for line identifications and energy distribution in ultraviolet region. Highly ionized atoms, SiIV and CIV are identified. We could infer a temperature range of the B star between 15,000K and 20,000K. The energy density distribution shows a hump between IUE short wavelength and long wavelength regions. Photometric and spectroscopic elements were revised based on the Florkowisk photeelectric observations and collected radial velocities. The temperature of both stars were reduced as 16,000K and 3,800K. The radii of both stars are $10 R_{\odot}\;and\;320R_{\odot}$. The eccentricity and longitude of periastron are 0.61 and $10.5^{\circ}$, respectively.

  • PDF

THE LORENTZ FORCE IN ATMOSPHERES OF CP STARS: θ AUR

  • VALYAVIN G.;KOCHUKHOV O.;SHULYAK D.;LEE B.-C.;GALAZUTDINOV G.;KIM K.-M.;HAN I.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.283-287
    • /
    • 2005
  • The slow evolution of global magnetic fields and other dynamical processes in atmospheres of CP magnetic stars lead to the development of induced electric currents in all conductive atmospheric layers. The Lorentz force, which results from the interaction between a magnetic field and the induced currents, may modify the atmospheric structure and provide insight into the formation and evolution of stellar magnetic fields. This modification of the pressure-temperature structure influences the formation of absorption spectral features producing characteristic rotational variability of some spectral lines, especially the Balmer lines (Valyavin et al., 2004 and references therein). In order to study these theoretical predictions we began systematic spectroscopic survey of Balmer line variability in spectra of brightest CP magnetic stars. Here we present the first results of the program. A0p star $\Theta$ Aur revealed significant variability of the Balmer profiles during the star's rotation. Character of this variablity corresponds to that classified by Kroll (1989) as a result of an impact of significant Lorentz force. From the obtained data we estimate that amplitudes of the variation at H$\alpha$, H$\beta$, H$\gamma$ and H$\delta$ profiles reach up to $2.4\%$during full rotation cycle of the star. Using computation of our model atmospheres (Valyavin et al., 2004) we interpret these data within the framework of the simplest model of the evolution of global magnetic fields in chemically peculiar stars. Assuming that the field is represented by a dipole, we estimate the characteristic e.m.f. induced by the field decay electric current (and the Lorentz force as the result) on the order of $E {\~} 10^{-11}$ cgs units, which may indicate very fast (< < $10^{10}$ years) evolution rate of the field. This result strongly contradicts the theoretical point of view that global stellar magnetic fields of CP stars are fossil and their the characteristic decay time of about $10^{10}$ yr. Alternatively, we briefly discuss concurring effects (like the ambipolar diffusion) which may also lead to significant atmospheric currents producing the observable Lorentz force.