• Title/Summary/Keyword: stars: variables ($\rho$ Pup)

Search Result 2, Processing Time 0.017 seconds

Chemical composition of Am stars: RR Lyn and $\rho$ Pup

  • Yushchenko, A.V.;Lee, J.J.;Kang, Y.W.;Doikov, D.N.
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.22.3-22.3
    • /
    • 2008
  • We present the results of the investigations of high dispersion spectra of two stars. These are the eclipsing binary RR Lyn, and $\rho$ Pup - the prototype of the group of pulsating variables. The spectra were obtained at 1.8 m Bohyuunsan observatory telescope, and 8.2 m VLT. We found the chemical composition. The both components of RR Lyn are Am stars (metallic line stars), but the abundance patterns of the components are not similar - the iron abundance and the abundances of other elements are surely different. For few elements the differences exceeds 1 dex. We found the abundances of 56 chemical elements in the atmosphere of $\rho$ Pup. This is one of the best stellar abundance patterns. It permits to investigate the role of the charge-exchange reactions in stellar atmospheres. These reactions can produce the abundance anomalies in the atmospheres of B-F type stars. These reactions can be one of the sources of galactic cosmic rays, and the reason of the braked rotation of A-F type chemically peculiar stars.

  • PDF

THE ATMOSPHERE PARAMETERS AND THE LINE PROFILE VARIATIONS OF ρ PUPPIS

  • Yushchenko, A.V.;Dorokhova, T.N.;Gopka, V.F.;Kim, Chul-Hee;Lee, B.C.;Yushchenko, V.A.;Doikov, D.N.
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.3
    • /
    • pp.65-74
    • /
    • 2010
  • We investigate ${\rho}$ Pup using the high resolution spectral observations taken from the VLT archive and observations at a 1.8m-Korean telescope with BOES spectrograph. The atmospheric parameters are determined using the iron-line abundance analysis. We derive an effective temperature value of $T_{eff}=6890{\pm}250K$, surface gravity of log g=$3.28{\pm}0.3$ dex, microturbulent velocity of ${\upsilon}_{micro}=4.1{\pm}0.4km\;s^{-1}$, and the iron abundance of log N=$7.82{\pm}0.15$. The projected rotational velocity of the star is close to ${\upsilon}$ sin i=3.5km $s^{-1}$. Asymmetric line profiles in the observed spectra and variation of this asymmetry with time show that both strong radial pulsation and weak non-radial pulsations are present in ${\rho}$ Pup.