• 제목/요약/키워드: stars: rotation

Search Result 53, Processing Time 0.323 seconds

ROTATION AND SURFACE ABUNDANCE PECULIARITIES IN A-TYPE STARS

  • Takeda, Yoichi;Han, In-Woo;Kang, Dong-Il;Lee, Byeong-Cheol;Kim, Kang-Min
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.4
    • /
    • pp.83-98
    • /
    • 2008
  • In an attempt of clarifying the connection between the photospheric abundance anomalies and the stellar rotation as well as of exploring the nature of "normal A" stars, the abundances of seven elements (C, O, Si, Ca, Ti, Fe, and Ba) and the projected rotational velocity for 46 A-type field stars were determined by applying the spectrum-fitting method to the high-dispersion spectral data obtained with BOES at BOAO. We found that the peculiarities(underabundances of C, O, and Ca; an overabundance of Ba) seen in slow rotators efficiently decrease with an increase of rotation, which almost disappear at $v_esin\;i{\gtrsim}100km\;s^{-1}$. This further suggests that stars with sufficiently large rotational velocity may retain the original composition at the surface without being altered. Considering the subsolar tendency(by several tenths dex below) exhibited by the elemental abundances of such rapidly-rotating (supposedly normal) A stars, we suspect that the gas metallicity may have decreased since our Sun was born, contrary to the common picture of galactic chemical evolution.

태양 주위에 있는 만기형 주계열성의 자전에 관한 연구

  • Yang, Eun-Su;Lee, Sang-Gak
    • Publications of The Korean Astronomical Society
    • /
    • v.4 no.1
    • /
    • pp.31-52
    • /
    • 1989
  • The rotational properties of late-type main sequence stars in the solar neighborhood have been investigated. So rotation periods and stellar radii are determined for 104 field stars, 8 Ursa Major Group stars, and 20 Hyades cluster stars. Most of the rotation periods are derived using the Noyes et al. (1984)'s relation between chromospheric activity and rotation period. Stellar radii are calculated by the Stefan law for the nearby stars within 25 pc from the sun. Rotational velocities at equator are determined by the above rotation periods and stellar radii. Their distribution along the (B-V) color shows an upper boundary and an abrupt drop for the stars in the range of 0.4<(B-V)<0.8, as found from the apparent rotational velocity data. Furthermore, it is apparent that there is an lower boundary of rotational velocity. The inclination of rotation axis to line-of-sight is obtained by comparing the rotational velocity at equator with the apparent rotational velocity given by the analysis of the line profiles. For the field stars, it is found that the inclination has no correlation with the galactic lattitude and follows random distribution.

  • PDF

Chromospheric Activity, Rotation and Age On Lower Main Sequence Stars

  • Park, Young-Deuk;Yun, Hong-Sik
    • Publications of The Korean Astronomical Society
    • /
    • v.1 no.1
    • /
    • pp.13-20
    • /
    • 1984
  • New empirical relations between stellar CaII emission and rotation or age are derived by analyzing Wilson's CaII flux measurements (1968, 1978) of lower main sequence stars, and then we correlate them with their age and rotation rate. It is found that stellar chromospheric emission decays smoothly with age as a star slows down rotationally, establishing that both the emission level and rotation rate decrease with the square root of age.

  • PDF

STELLAR MAGNETIC ACTIVITY AND LONG TERM LUMINOSITY VARIATIONS OF LATE TYPE STARS.: II. STELLAR ACTIVITY PERIODS BASED ON PARKER'S DYNAMO THEORY

  • Park, Chang-Bum;Yun, Hong-Sik
    • Journal of The Korean Astronomical Society
    • /
    • v.19 no.2
    • /
    • pp.91-107
    • /
    • 1986
  • Making use of our extended version of $\ddot{O}pik's$ convection theory, we have calculated magnetic cycle periods of the sun and late type stars by using Parker's dynamo theory, where we have included the non-linear effect. We presented a relationship between the computed cycle period and spectral type to analyze observed magnetic activities of the late type stars and long-term luminosity variations. It is found that (1) the stellar magentic-cycle period increases towards the later spectral type, (2) the rapid rotation facilitates the activity-related luminosity variation of stars later than about K5, (3) differential rotation plays a critical role in determining the magnetic activity-cycle period, and (4) the non-local effect should be taken into account in order to understand the observed long-term luminosity variations.

  • PDF

Flare and Starspot-induced Variabilities of Red Dwarf Stars in the Open Cluster M37: Photometric Study on Magnetic Activity

  • Chang, Seo-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.83.2-83.2
    • /
    • 2014
  • Flare and rotational variabilities induced by stellar activity are important for studying the effect of magnetic fields on the evolution of red dwarf stars. The level and frequency of magnetic activity in these stars have a different aspect at every moment of the observations due to the effect of age-rotation relation. The use of both tracers is thus essential to have a relatively homogeneous set of stellar activity data for statistical studies. The archival light curves and imaging data of the open cluster M37 taken by MMT 6.5m telescope were used for this work. In order to achieve much more accurate photometric precisions and also to make the most efficient use of the data, the entire imaging database were re-analyzed with our new time-series photometry technique and carefully calibration procedures. Based on the new light curves, we study, for the first time, a variety of aspects of those two variabilities in red dwarfs and their relation to magnetic activity. In this talk, we present all observational evidences that support the idea that the strength of magnetic activity is closely connected with the rotation rate of a star and its evolutionary status (age-activity-rotation paradigm). In conclusion, we suggest future directions to improve our understanding of stellar activity in cool stars with photometric time-series data.

  • PDF

Effect of rotation on the evolution of Population III protostars

  • Lee, Hunchul;Yoon, Sung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.81.2-81.2
    • /
    • 2014
  • To figure out the effect of rotation on the final mass of Pop III stars, 1D stellar evolution simulations of the evolution of mass-accreting protostars are performed, with zero metalicity and high constant mass accretion rates. The protostar reaches the Keplerian rotation very soon after the onset of mass accretion, but it may continue mass accretion via angular momentum transport induced by viscous stress or magnetic field. However, as the accreting star evolves, the envelope expands rapidly when the total mass reaches $5{\sim}6M_{\odot}$ and the corresponding Eddington factor sharply increases. Strong radiative pressure with rotation imposes different criteria for breakup at the stellar surface, and the so-called 'critical rotation (${\Omega}{\Gamma}$-limit)' is reached. As a result mass accretion rate has to be significantly lowered. This implies that characteristic masses of Pop III stars would be significantly lowered than the previous expectation.

  • PDF

Star-gas misalignment in Horizon-AGN simulation

  • Khim, Donghyeon J.;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.74.3-75
    • /
    • 2019
  • Recent Integral Field Spectroscopy (IFS) studies revealed that not only late type galaxies (LTGs) but also early type galaxies (ETGs) have various kinds of kinematic rotation. (e.g. not clearly detectable rotation, disk-like rotation, kinematically distinct core (Cappellari 06)) Among the various studies about galactic kinematics, one of the most notable anomalies is the star-gas misalignment. The gas forms stars and stars release gas through mass-loss. In this process, their angular momentum is conserved. Therefore, kinematic decoupling between stars and gas can occur due to external gas inflow or perturbation of components. There are some possible origins of misalignment: cold gas from filaments, hot gas from outer halo, interaction or merging events with galaxies and environmental effects. Misalignment, the black box from mixture of internal and external gas, can be an important keyword for understanding further about galaxies' kinematics and external processes. Using both SAMI IFS data(Sydney-AAO Multi-object Integral field spectrograph Galaxy Survey, Croom+12) and Horizon-AGN simulation(Dubois+14), we examined misaligned galaxies properties and distribution. Because the simulation has lots of galaxies at various z, we were able to study history of formation, evolution and extinction of misalignment, which was hard to be done with observation only.

  • PDF

Chemical composition of Am stars: RR Lyn and $\rho$ Pup

  • Yushchenko, A.V.;Lee, J.J.;Kang, Y.W.;Doikov, D.N.
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.22.3-22.3
    • /
    • 2008
  • We present the results of the investigations of high dispersion spectra of two stars. These are the eclipsing binary RR Lyn, and $\rho$ Pup - the prototype of the group of pulsating variables. The spectra were obtained at 1.8 m Bohyuunsan observatory telescope, and 8.2 m VLT. We found the chemical composition. The both components of RR Lyn are Am stars (metallic line stars), but the abundance patterns of the components are not similar - the iron abundance and the abundances of other elements are surely different. For few elements the differences exceeds 1 dex. We found the abundances of 56 chemical elements in the atmosphere of $\rho$ Pup. This is one of the best stellar abundance patterns. It permits to investigate the role of the charge-exchange reactions in stellar atmospheres. These reactions can produce the abundance anomalies in the atmospheres of B-F type stars. These reactions can be one of the sources of galactic cosmic rays, and the reason of the braked rotation of A-F type chemically peculiar stars.

  • PDF

STELLAR ACTIVITY AND ROTATION PERIOD OF LOWER MAIN SEQUENCE STARS

  • Yun, Hong-Sik;Park, Young-Deuk
    • Journal of The Korean Astronomical Society
    • /
    • v.21 no.1
    • /
    • pp.79-95
    • /
    • 1988
  • To examine relations between stellar activity and rotation we estimated parameters of stellar activity such as $R'_{HK}$, $R'_{MgII}$, $R'_{CII}$, $R'_{CIV}$ and $R'_{X-ray}$ from the published data which measure the activity levels of stellar chromospheres, transition regions and coronae. In the present study we considered only the main sequence stars in an attempt to minimize the influence of other stellar parameters such as radius, age and stellar convection on stellar activity since they are also known to affect the magnetic field generation. In the present analysis we selected only those stars that satisfy the following conditions: (1) flux measurements are available together with Ca II fluxes and (2) rotation periods are determined by Ca II observations. We derived relations between the ${\bar{R}}ossby$ number $R_o$ and stellar activity $R'_{HK}$, $R'_{MgII}$, $R'_{CII}$, $R'_{CIV}$ and $R'_{X-ray}$ and assessed the relations by plotting $R'_{HK}$, $R'_{MgII}$ and $R'_{X-ray}$ against rotation period $P_{rot}$ for comparison with observations. From the comparison it is found that as far as the rotation-activity relation is concerned, (1) normalized surface flux $R'_{HK}$ is better than the surface flux $F'_{HK}$, in the sense that $R'_{HK}$ differentiates the color dependence better and (2) $R'_{HK}$ defined by Rutten (1984) describes the observations notably better than $R'_{HK}$ of Noyes et al. (1984).

  • PDF

A Study on the Interpretation of the Dynamical Properties of the High Velocity Stars (고속도성(高速度星)의 역학적해석(力學的解釋)에 대(對)한 연구(硏究))

  • Lee, Young-Bom;Yu, Kyung-Loh
    • Journal of The Korean Astronomical Society
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 1971
  • The average velocity, 330km/sec. of the high velocity stars with respect to the galactic center is obtained from the data used by Fricke on the assumption that the rotational velocity of the Local Standard of Rest is 250km/sec. Comparing this value with the escape velocity, 380km/sec, at the solar neighborhood which is calculated from Mestel's model of the Galaxy, it is shown that most of the high velocity stars are bound to the Galaxy and that their average apogalacticon is about 40 kpc from the galactic center. And the fact that stars with radial velocities larger than 63km/sec are missing in the direction of galactic rotation of L.S.R. is interpreted as the result partly of the random distribution of the directions of motion of the high velocity stars and partly of the observational errors.

  • PDF