• Title/Summary/Keyword: stars: planetary systems

Search Result 15, Processing Time 0.039 seconds

A SEARCH FOR EXOPLANETS AROUND NORTHERN CIRCUMPOLAR STARS VI. DETECTION OF PLANETARY COMPANIONS ORBITING THE GIANTS HD 60292 AND HD 112640

  • Lee, Byeong-Cheol;Park, Myeong-Gu;Han, Inwoo;Bang, Tae-Yang;Oh, Hyeong-Il;Choi, Yeon-Ho
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.1
    • /
    • pp.27-34
    • /
    • 2020
  • We report the detection of exoplanet candidates in orbits around HD 60292 and HD 112640 from a radial velocity (RV) survey. The stars exhibit RV variations with periods of 495 ±3 days and 613±6 days, respectively. These detections are part of the Search for Exoplanets around Northern Circumpolar Stars (SENS) survey using the fiber-fed Bohyunsan Observatory Echelle Spectrograph installed at the 1.8-m telescope of the Bohyunsan Optical Astronomy Observatory in Korea. The aim of the survey is to search for planetary or substellar companions. We argue that the periodic RV variations are not related to surface inhomogeneities; rather, Keplerian motions of planetary companions are the most likely interpretation. Assuming stellar masses of 1.7 ± 0.2M (HD 60292) and 1.8 ± 0.2M (HD 112640), we obtain minimum planetary companion masses of 6.5 ± 1.0MJup and 5.0 ± 1.0MJup, and periods of 495.4 ± 3.0 days and 613.2 ± 5.8 days, respectively.

CIRCUMBINARY PLANETS ORBITING AROUND POST COMMON ENVELOPE BINARIES

  • ZHU, L.Y.;QIAN, S.B.;LIAO, W.P.;LAJUS, E. FERNANDEZ;SOONTHORNTHUM, B.;ZHAO, E.G.;LIU, L.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.289-292
    • /
    • 2015
  • Most of the stars in the Galaxy are in binary systems. Binaries should be possible as the hosting stars of planets. Searching for planetary companions to binaries, especially evolved close binary stars, can provide insight into the formation and the ultimate fate of circumbinary planets and shed light on the late evolution of binary stars. In order to do this, we have chosen some post common envelope binaries including sdB-type eclipsing binaries and detached WD+dM eclipsing binaries as our targets and monitored them for several years. In this paper, we will present some of our new observations and results for three targets, NSVS 07826147, NSVS14256825 and RR Cae.

OKAYAMA PLANET SEARCH PROGRAM

  • SATO BUN'EI
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.315-318
    • /
    • 2005
  • We have carried out a precise Doppler survey of G-type giants aiming to unveil the properties of planetary systems in intermediate-mass stars ($1.5-5M_{\bigodot}$). G-type giants are promising targets for Doppler planet searches around massive stars, because they are slow-rotators and have many sharp absorption lines in their spectra and their surface activities are relatively low in contrast to their younger counterparts on the main-sequence (B-A stars). We are now monitoring radial velocities of about 300 late G-type (including early K-type) giants using HIgh Dispersion Echelle Spectrograph (HIDES) at Okayama Astrophysical Observatory. We have achieved a Doppler precision of about 6-7 m/s over a time span of 3 years using an iodine absorption cell. We found that most of the targets have radial velocity scatters of ${\sigma}{\~} 10-20 m\;s^{-1}$ over 1-3 years, with the most stable reaching levels of 6-8 m $s^{-1}$. Up to now, we have succeeded in discovering the first extrasolar planet around a G-type giant star HD 104985, and also found several candidates showing significant radial velocity variations, suggesting the existence of stellar and substellar companions. Observations have continued to establish their variability.

A Search for Exoplanets around Northern Circumpolar Stars. VIII. Filtering Out a Planet Cycle from the Multi-Period Radial Velocity Variations in M Giant HD 36384

  • Byeong-Cheol Lee;Gwanghui Jeong;Jae-Rim Koo;Beomdu Lim;Myeong-Gu Park;Tae-Yang Bang;Yeon-Ho Choi;Hyeong-Ill Oh;Inwoo Han
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.195-199
    • /
    • 2023
  • This paper is written as a follow-up observations to reinterpret the radial velocity (RV) of HD 36384, where the existence of planetary systems is known to be ambiguous. In giants, it is, in general, difficult to distinguish the signals of planetary companions from those of stellar activities. Thus, known exoplanetary giant hosts are relatively rare. We, for many years, have obtained RV data in evolved stars using the high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at the Bohyunsan Optical Astronomy Observatory (BOAO). Here, we report the results of RV variations in the M giant HD 36384. We have found two significant periods of 586 d and 490 d. Considering the orbital stability, it is impossible to have two planets at so close orbits. To determine the nature of the RV variability variations, we analyze the HIPPARCOS photometric data, some indicators of stellar activities, and line profiles. A significant period of 580 d was revealed in the HIPPARCOS photometry. Hα EW variations also show a meaningful period of 582 d. Thus, the period of 586 d may be closely related to the rotational modulations and/or stellar pulsations. On the other hand, the other significant period of 490 d is interpreted as the result of the orbiting companion. Our orbital fit suggests that the companion was a planetary mass of 6.6 MJ and is located at 1.3 AU from the host.

Binary Nature Revealed in Circumstellar Spiral-Shell Patterns

  • Kim, Hyosun;Hsieh, I-Ta;Liu, Sheng-Yuan;Taam, Ronald E.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.56.1-56.1
    • /
    • 2014
  • With the advent of high-resolution high-sensitivity observations, spiral patterns have been revealed around several asymptotic giant branch (AGB) stars. Such patterns can provide possible evidence for the existence of central binary stars embedded in outflowing circumstellar envelopes. It is, however, not generally recognized that the binary induced pattern, vertically extended from the orbital plane, exhibits a ring-like pattern with an inclined viewing angle. I will first review the binary-induced spiral-shell patterns on the AGB circumstellar envelopes with the effect of inclination angle with respect to the orbital plane, of which large inclination cases reveal incomplete ring-like patterns. I will describe a method of extracting such spiral-shell from the gas kinematics of an incomplete ring-like pattern to place constraints on the characteristics of the (unknown) central binary stars. This first success may open the possibility of connecting the ring-like patterns commonly found in the AGB circumstellar envelopes and in the outer parts of (pre-)planetary nebulae and pointing to the conceivable presence of central binary systems, which may give a clue for the onset of asymmetrical planetary nebulae.

  • PDF

SEARCH FOR DEBRIS DISKS BY AKARI AND IRSF

  • Takeuchi, Nami;Ishihara, Daisuke;Kaneda, Hidehiro;Oyabu, Shinki;Kobayashi, Hiroshi;Nagayama, Takahiro;Onaka, Takashi;Fujiwara, Hideaki
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.73-75
    • /
    • 2017
  • Debris disks are important observational clues to understanding on-going planetary system formation. They are usually identified by significant mid-infrared excess on top of the photospheric emission of a central star on the basis of prediction from J-, H-, and Ks-band fluxes and the stellar model spectra. For bright stars, 2MASS near-infrared fluxes suffer large uncertainties due to the near-infrared camera saturation. Therefore we have performed follow-up observations with the IRSF 1.4 m near-infrared telescope located in South Africa to obtain accurate J-, H-, and Ks-band fluxes of the central stars. Among 754 main-sequence stars which are detected in the AKARI $18{\mu}m$ band, we have performed photometry for 325 stars with IRSF. As a result, we have successfully improved the flux accuracy of the central stars from 9.2 % to 0.5 % on average. Using this dataset, we have detected $18{\mu}m$ excess emission from 57 stars in our samples with a $3{\sigma}$ level. We find that some of them have high ratios of the excess to the photospheric emission even around very old stars, which cannot be explained by the current planet-formation theories.

Comparison of multi-planetary systems including hot-Super Earth with and without exo-Jupiter

  • Choi, Beom Kyu;Yoon, Tae Seog
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.90.1-90.1
    • /
    • 2015
  • Almost hot-Super Earths ($R_p$~1 to $4R_{earth}$ orbital period < 100 days) are around Sun-like stars. But our solar system does not have hot-Super Earth. Andre et al. 2015 has explained this phenomenon by that Jupiter blocks migration of super earth. We have found a multi-planetary system KOI-94 with exo-Jupiter and hot-Super Earth from NASA exoplanet archive data (http://exoplanetarchive.ipac.caltech.edu). In this study, within multi-planetary systems including hot-Super Earth, we compared those with and without exo-Jupiter using their host star and exoplanet parameters, such as metallicity [Fe/H], $T_{eff}$ and $R_*/R_p$.

  • PDF

DEBRIS DISKS EXPLORED BY AKARI AND IRSF

  • Kiriyama, Y.;Ishihara, D.;Nagayama, T.;Kaneda, H.;Oyabu, S.;Onaka, T.;Fujiwara, H.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.181-182
    • /
    • 2012
  • Using the AKARI mid-infrared all-sky survey catalogue, we are searching for debris disks which are important objects as an observational clue to on-going planetary system formation. Debris disk candidates are selected through a significant excess of the measured flux over the predicted flux for the stellar photospheric emission at $18{\mu}m$. The fluxes were originally estimated based on the near-infrared spectral energy distributions (SEDs) of central stars constructed from the 2MASS J-, H-, and Ks-band fluxes. However, we found that in many cases the 2MASS photometry has large errors due to saturation in the central part of a star image. Therefore we performed follow-up observations with the IRSF 1.4m near-infrared telescope in South Africa to obtain accurate fluxes in the J-, H-, and Ks-bands. As a result, we have succeeded in improving the SEDs of the central stars. This improvement of the SEDs allows us to make more reliable selection of the candidates.

A Search for Exoplanets around Northern Circumpolar Stars. IX. A Multi-Period Analysis of the M Giant HD 135438

  • Byeong-Cheol Lee;Jae-Rim Koo;Yeon-Ho Choi;Tae-Yang Bang;Beomdu Lim;Myeong-Gu Park;Gwanghui Jeong
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.277-286
    • /
    • 2023
  • It is difficult to distinguish the pure signal produced by an orbiting planetary companion around giant stars from other possible sources, such as stellar spots, pulsations, or certain activities. Since 2003, we have obtained radial (RV) data from evolved stars using the high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at the Bohyunsan Optical Astronomy Observatory (BOAO). Here, we report the results of RV variations in the binary star HD 135438. We found two significant periods: 494.98 d with eccentricity of 0.23 and 8494.1 d with eccentricity of 0.83. Considering orbital stability, it is impossible to have two companions in such close orbits with high eccentricity. To determine the nature of the changes in the RV variability, we analyzed indicators of stellar spot and stellar chromospheric activity to find that there are no signals related to the significant period of 494.98 d. However, we calculated the upper limits of rotation period of the rotational velocity and found this to be 478-536 d. One possible interpretation is that this may be closely related to the rotational modulation of an orbital inclination at 67-90 degrees. The other signal corresponding to the period of 8494.1 d is probably associated with a stellar companion orbiting the giant star. A Markov Chain Monte Carlo (MCMC) simulation considering a single companion indicates that HD 135438 system hosts a stellar companion with 0.57+0.017 -0.017 M with an orbital period of 8498 d.

Physical Dimensions of Planet-hosting Stars

  • Bach, Kiehunn;Kang, Wonseok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.85.1-85.1
    • /
    • 2019
  • Accurate estimation of the masses, the ages, and the chemical abundances of host stars is crucial to understand physical characteristics of exo-planetary systems. In this study, we investigate physical dimensions of 94 planet-hosting stars based on spectroscopic observation and stellar evolutionary computation, From the high resolution echelle spectroscopy of the BOES observation, we have analysed metallicities and alpha-element enhancements of host stars. By combining recent spectro-photometric observations, stellar parameters are calibrated within the frame work of the standard stellar theory. In general, the minimum chi-square estimation can be strongly biased in cases that stellar properties rapidly changes after the terminal age main-sequence. Instead, we adopt a Bayesian statistics considering a priori distribution of stellar parameters during the rapid evolutionary phases. we determine a reliable set of stellar parameters between theoretical model grids. To overcome this statistical bias, (1) we adopt a Bayesian statistics considering a priori distribution of stellar parameters during the rapid evolutionary phases and (2) we construct the fine model grid that covers mass range ($0.2{\sim}3.0M_{\odot}$) with the mass step ${\Delta}M=0.01M_{\odot}$, metallicities Z = 0.0001 ~ 0.04, and the helium and the alpha-element enhancement. In this presentation, we introduce our calibration scheme for several hosting stars.

  • PDF