• 제목/요약/키워드: stars: massive

검색결과 164건 처리시간 0.021초

CHEMICAL DIAGNOSTICS OF THE MASSIVE STAR CLUSTER-FORMING CLOUD G33.92+0.11. III. 13CN AND DCN

  • Minh, Young Chol;Liu, Hauyu Baobab
    • 천문학회지
    • /
    • 제52권3호
    • /
    • pp.83-88
    • /
    • 2019
  • Using ALMA observations of the $^{13}CN$ and DCN lines in the massive star-forming region G33.92+0.11A, we investigate the CN/HCN abundance ratio, which serves as a tracer of photodissociation chemistry, over the whole observed region. Even considering the uncertainties in calculating the abundance ratio, we find high ratios (${\gg}1$) in large parts of the source, especially in the outer regions of star-forming clumps A1, A2, and A5. Regions with high CN/HCN ratios coincide with the inflows of accreted gas suggested by Liu et al. (2015). We conclude that we found strong evidence for interaction between the dense gas clumps and the accreted ambient gas which may have sequentially triggered the star formation in these clumps.

The fate of an infalling circumgalactic gas clump and the growth of the central massive black hole in a high-redshift quasar

  • Jo, Yongseok;Kim, Ji-hoon
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.35.1-35.1
    • /
    • 2020
  • Since the discovery of SMBHs at z > 6, the growth spurt of a BH in a relatively short time—a few hundred Myr—has been a challenging topic for many observers and theorists. Super-Eddington accretion, major and minor merger have been compelling candidate machanisms to account for such growth. We introduce a passive scalar field to trace the infalling of circumgalactic gas clump onto high-z quasar. With the scalar field, we investigate e.g. where the most of the gas clump eventually reside in the host galaxy and how much gas is accreted onto the central massive black hole. In addition, we have studied the impact of thermal feedback of stars on the growth of black hole and the infalling gas. We will also discuss the future application of passive scalar field in e.g. minor and major mergers of high-z quasar.

  • PDF

Nature of Fe II fluorescent lines in Luminous Blue Variables

  • 이재준;장석준;선광일;김현정
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.51.2-51.2
    • /
    • 2020
  • Luminous blue variables (LBVs) are massive evolved stars that show unpredictable photometric and spectral variation. It is generally assumed that they undergo one or more of large eruptions. We have obtained high dispersion NIR spectra of several LBVs with Immersion GRating INfrared Spectrometer (IGRINS). One notable feature in their IGRINS spectra is the existence of broad lines (~ a few hundred km/s) with unusual boxy profile. They are fluorescent lines of Fe II by Lyman α photons in the stellar wind. However, modeling of these lines with radiative transfer code CMFGEN predicts much weaker line strength. We propose that incorporating broadening of Lyman α line by scattering processes in dense wind can enhance the Fe II fluorescent lines. We further discuss how these Fe II fluorescent lines can be used to characterize massive LBV wind.

  • PDF

THE CLASSIFICATION AND PHYSICS OF SUPERNOVAE

  • Wheeler, J. Craig
    • 천문학논총
    • /
    • 제8권1호
    • /
    • pp.169-177
    • /
    • 1993
  • Observed spectra of supernovae allow the empirical classification of supernovae into two basic categories, Type I with little or no evidence of hydrogen, and Type II with obvious evidence for hydrogen. The broad class of Type I can be subdivided depending on whether helium or silicon and other intermediate mass elements is observed. Understanding the physical processes that underlie these classifications---the progenitor evolution. the explosion mechanism, and end products---requires calculation of radiative transfer and model spectra. While most Type II occur in evolved massive stars that undergo core collapse. some may span the dividing line between degenerate and non-degenerate carbon burning and involve both core collapse and thermonuclear explosion. Type Ia are still most plausibly explained as thermonuclear explosions in carbon/oxygen white dwarfs in binary systems. Type Ib reveal helium atmospheres and are probably the result of core collapse in the helium core of a massive star that has lost its hydrogen envelope to a binary companion or to a wind. Type Ic supernovae are probably related to Type Ib but have also lost their helium envelope to reveal a mantle rich in oxygen.

  • PDF

HOT, WARM, AND COLD CORES: GOLDILOCKS MEETS MASSIVE STAR FORMATION

  • KURTZ S.
    • 천문학회지
    • /
    • 제37권4호
    • /
    • pp.265-268
    • /
    • 2004
  • Molecular clouds present many levels of structure, including clumps and cores of varying size and density. We present a brief summary of these cores, describing their observed physical properties and their place in the star formation process. We conclude with some speculation about pre-proto-stellar stages of molecular cores and the observational challenges in their observation.

Science with the Giant Magellan Telescope Integral-Field Spectrograph

  • 이재준;박병곤;황나래;이준협
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.68.2-68.2
    • /
    • 2013
  • The Giant Magellan Telescope Integral-Field Spectrograph (GMTIFS) is a near-infrared imager and integral-field spectrograph, which will be the workhorse adaptive-optics (AO) instrument on the GMT when AO operations begin. We will describe the current design and proposed capabilities of the GMTIFS. We will also present a brief overview of GMTIFS science cases that include first-light objects, galaxy feedback and assembly, the nature of compact massive objects as well as the formation and evolution of stars and planets.

  • PDF

Inner Circumstellar Ring of Galactic Luminous Blue Variable G26.

  • Lee, Jae-Joon
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.51.4-51.4
    • /
    • 2018
  • Luminous blue variables (LBVs) are luminous evolved massive stars (thus with very large initial masses) typified by their irregular variabilities, which are sometimes associated with eruptive mass loss. G026.47+0.02 is one of the known Galactic LBV surrounded by large circumstellar shell (r~1') detected in far IR. In this presentation, we report the identification of another shell of smaller radii (r~20") indicating that the central star experienced multiple episodes of eruptions. We present detailed multi-wavelength study of the inner shell in near IR and sub-mm, with which we reconstruct its mass-loss history.

  • PDF

Formation of star clusters by cloud-cloud collision

  • Han, Daniel;Kimm, Taysun
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.68.3-68.3
    • /
    • 2019
  • We present the preliminary results on the formation of star clusters by cloud-cloud collision. For this purpose, we perform sub-parsec scale, radiation-hydrodynamic simulations of giant molecular clouds using a sink particle algorithm. The simulations include photo-ionization, direct radiation pressure, and non-thermal radiation pressure from infrared and Lyman alpha photons. We confirm that radiation feedback from massive stars suppresses accretion onto sink particles. We examine the collision-induced star formation and discuss the possibility on the formation of a globular cluster.

  • PDF

Discovery of a New Mechanism of Dust Destruction in Strong Radiation Fields and Implications

  • Hoang, Thiem;Tram, Le Ngoc;Lee, Hyseung;Ahn, Sang-hyeon
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.44.3-44.3
    • /
    • 2019
  • Massive stars, supernovae, and kilonovae are among the most luminous radiation sources in the universe. Observations usually show near- to mid-infrared (NIR-MIR, 1-5~micron) emission excess from H II regions around young massive star clusters (YMSCs) and anomalous dust extinction and polarization towards Type Ia supernova (SNe Ia). The popular explanation for such NIR-MIR excess and unusual dust properties is the predominance of small grains (size a<0.05micron) relative to large grains (a>0.1micron) in the local environment of these strong radiation sources. The question of why small grains are predominant in these environments remains a mystery. Here we report a new mechanism of dust destruction based on centrifugal stress within extremely fast rotating grains spun-up by radiative torques, namely the RAdiative Torque Disruption (RATD) mechanism, which can resolve this question. We find that RATD can destroy large grains located within a distance of ~ 1 pc from a massive star of luminosity L~ 10^4L_sun and a supernova. This increases the abundance of small grains relative to large grains and successfully reproduces the observed NIR-MIR excess and anomalous dust extinction/polarization. We show that small grains produced by RATD can also explain the steep far-UV rise in extinction curves toward starburst and high redshift galaxies, as well as the decrease of the escape fraction of Ly-alpha photons observed from HII regions surrounding YMSCs.

  • PDF

A deep and High-resolution Study of Ultra-diffuse Galaxies in Distant Massive Galaxy Clusters

  • Lee, Jeong Hwan;Kang, Jisu;Jang, In Sung;Lee, Myung Gyoon
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.38.4-38.4
    • /
    • 2019
  • Ultra-diffuse galaxies (UDGs) are intriguing in the sense that they are much larger than dwarf galaxies but have much lower surface brightness than normal galaxies. To date, UDGs have been found only in the local universe. Taking advantage of deep and high-resolution HST images, we search for UDGs in massive galaxy clusters in the distant universe. In this work, we present our search results of UDGs in three massive clusters of the Hubble Frontier Fields: Abell 2744 (z=0.308), Abell S1063 (z=0.348), and Abell 370 (z=0.375). These clusters are the most distant and massive among the host systems of known UDGs. The color-magnitude diagrams of these clusters show that UDGs are mainly located in the faint end of the red sequence. This means that most UDGs in these clusters consist of old stars. Interestingly, we found a few blue UDGs, which implies that they had recent star formation. The radial number densities of UDGs clearly decrease in the central region of the clusters in contrast to those of bright galaxies which keep rising. This implies that a large fraction of UDGs in the central region were tidally disrupted. These features are consistent with those of UDGs in nearby galaxy clusters. We estimate the total number of UDGs (N(UDG)) in each cluster. The abundance of UDGs shows a tight relation with the virial masses (M_200) of thier host systems: M_200 \propto N(UDG)^(1.01+/-0.05). This slope is found to be very close to one, indicating that efficiency of UDGs does not significantly depend on the host environments. Furthermore, estimation of dynamical masses of UDGs indicates that most UDGs have dwarf-like masses (M_200 < 10^11 M_Sun), but a few UDGs have $L{\ast}$-like masses (M_200 > 10^11 M_Sun). In summary, UDGs in distant massive clusters are found to be similar to those in the local universe.

  • PDF