• Title/Summary/Keyword: stars: magnetic field

Search Result 25, Processing Time 0.02 seconds

MHD WAVE ENERGY FLUXES GENERATED FROM CONVECTION ZONES OF LATE TYPE STARS

  • Moon, Yong-Jae;Yun, Hong-Sik
    • Journal of The Korean Astronomical Society
    • /
    • v.24 no.2
    • /
    • pp.129-149
    • /
    • 1991
  • An attempt has been made to examine the characteristics of acoustic and MHD waves generated in stellar convection zones($4000\;K\;{\leq}\;T_{eff}\;{\leq}\;7000\;K$, $3\;{\leq}\;\log\;g\;{\leq}\;4.5$). With the use of wave generation theories formulated for acoustic waves by Stein (1967), for MHD body waves by Musielak and Rosner (1987, 1988) and for MHD tube waves by Musielak et al.(l989a, 1989b), the energy fluxes are calculated and their dependence on effective temperature, surface gravity and megnetic field strength are analyzed by optimization techniques. In computing magneto-convection models, the effect of magnetic fields on the efficiency of convection has been taking into account by extrapolating it from Yun's sunspot models(1968; 1970). Our study shows that acoustic wave fluxes are dominant in F and G stars, while the MHD waves dominant in K and M stars, and that the MHD wave fluxes vary as $T_{eff}^4{\sim}T_{eff}^7$ in contrast to the acoustic fluxes, as $T_{eff}^{10}$. The gravity dependence, on the other hand, is found to be relatively weak; the acoustic wave fluxes ${\varpropto}\;g^{-0.5}$, the longitudinal tube wave fluxes ${\varpropto}\;g^{0.3}$ and the transverse tube wave fluxes ${\varpropto}\;g^{0.3}$. In the case of the MHD body waves their gravity dependence is found to be nearly negligible. Finally we assesed the computed energy fluxes by comparing them with the observed fluxes $F_{ob}$ of CIV(${\lambda}1549$) lines and soft X-rays for selected main sequence stars. When we scaled the corrected wave fluxes down to $F_{ob}$, it is found that these slopes are almost in line with each other.

  • PDF

LATEST RESULTS OF THE MAXI MISSION

  • MIHARA, TATEHIRO
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.559-563
    • /
    • 2015
  • Monitor of All-sky X-ray Image (MAXI) is a Japanese X-ray all-sky surveyer mounted on the International Space Station (ISS). It has been scanning the whole sky since 2009 during every 92-minute ISS rotation. X-ray transients are quickly found by the real-time nova-search program. As a result, MAXI has issued 133 Astronomer's Telegrams and 44 Gamma-ray burst Coordinated Networks so far. MAXI has discovered six new black holes (BH) in 4.5 years. Long-term behaviors of the MAXI BHs can be classified into two types by their outbursts; a fast-rise exponential-decay type and a fast-rise flat-top one. The slit camera is suitable for accumulating data over a long time. MAXI issued a 37-month catalog containing 500 sources above a ~0.6 mCrab detection limit at 4-10 keV in the region ${\mid}{b}{\mid}$ > $10^{\circ}$. The SSC instrument utilizing an X-ray CCD has detected diffuse soft X-rays extending over a large solid angle, such as the Cygnus super bubble. MAXI/SSC has also detcted a Ne emission line from the rapid soft X-ray nova MAXI J0158-744. The overall shapes of outbursts in Be X-ray binaries (BeXRB) are precisely observed with MAXI/GSC. BeXRB have two kinds of outbursts, a normal outburst and a giant one. The peak dates of the subsequent giant outbursts of A0535+26 repeated with a different period than the orbital one. The Be stellar disk is considered to either have a precession motion or a distorted shape. The long-term behaviors of low-mass X-ray binaries (LMXB) containing weakly magnetized neutron stars are investigated. Transient LMXBs (Aql X-1 and 4U 1608-52) repeated outbursts every 200-1000 days, which is understood by the limit-cycle of hydrogen ionization states in the outer accretion disk. A third state (very dim state) in Aql X-1 and 4U 1608-52 was interpreted as the propeller effect in the unified picture of LMXB. Cir X-1 is a peculiar source in the sense that its long-term behavior is not like typical LMXBs. The luminosity sometimes decreases suddenly at periastron. It might be explained by the stripping of the outer accretion disk by a clumpy stellar wind. MAXI observed 64 large flares from 22 active stars (RS CVns, dMe stars, Argol types, young stellar objects) over 4 years. The total energies are $10^{34}-10^{36}$ erg $s^{-1}$. Since MAXI can measure the spectrum (temperature and emission measure), we can estimate the size of the plasma and the magnetic fields. The size sometimes exceeds the size of the star. The magnetic field is in the range of 10-100 gauss, which is a typical value for solar flares.

STELLAR ACTIVITY AND ROTATION PERIOD OF LOWER MAIN SEQUENCE STARS

  • Yun, Hong-Sik;Park, Young-Deuk
    • Journal of The Korean Astronomical Society
    • /
    • v.21 no.1
    • /
    • pp.79-95
    • /
    • 1988
  • To examine relations between stellar activity and rotation we estimated parameters of stellar activity such as $R'_{HK}$, $R'_{MgII}$, $R'_{CII}$, $R'_{CIV}$ and $R'_{X-ray}$ from the published data which measure the activity levels of stellar chromospheres, transition regions and coronae. In the present study we considered only the main sequence stars in an attempt to minimize the influence of other stellar parameters such as radius, age and stellar convection on stellar activity since they are also known to affect the magnetic field generation. In the present analysis we selected only those stars that satisfy the following conditions: (1) flux measurements are available together with Ca II fluxes and (2) rotation periods are determined by Ca II observations. We derived relations between the ${\bar{R}}ossby$ number $R_o$ and stellar activity $R'_{HK}$, $R'_{MgII}$, $R'_{CII}$, $R'_{CIV}$ and $R'_{X-ray}$ and assessed the relations by plotting $R'_{HK}$, $R'_{MgII}$ and $R'_{X-ray}$ against rotation period $P_{rot}$ for comparison with observations. From the comparison it is found that as far as the rotation-activity relation is concerned, (1) normalized surface flux $R'_{HK}$ is better than the surface flux $F'_{HK}$, in the sense that $R'_{HK}$ differentiates the color dependence better and (2) $R'_{HK}$ defined by Rutten (1984) describes the observations notably better than $R'_{HK}$ of Noyes et al. (1984).

  • PDF

A CONSTRUCTION OF AN AUTOMATIC OBSERVATION SYSTEM FOR BRIGHT AND LONG PERIOD VARIABLE STARS (밝은 장주기 변광성관측을 위한 자동관측시스템 구축)

  • Yoon Joh-Na;Lee Chung-Uk;Cha Sang-Mok;Kim Yong-Gi
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.2
    • /
    • pp.143-152
    • /
    • 2006
  • An automatic observation system has been constructed at Chungbuk National University for the purpose of monitoring the bright and long period variable stars effectively. We improved the control part of 40cm telescope of the LX200 and developed n observing software ObsTool II so that the telescope, CCD camera and dome can be controlled in one software. ObsTool II is a COM (Common Object Module) based software, which can be easily reprogrammed in case that a new telescope or CCD camera is installed. Because this system has an additional function in which the telescope can switch the variable, comparison, and check stars respectively as like a photoelectric observation, we can observe the variable star even if the CCD view field does not contain the comparison star with the variable star. In order to check the system stability a W UMa type variable V523 Cas and a magnetic cataclysmic variable TT Ari have been observed with the constructed system and the results have been discussed in context with the possibility of a further application of our automatical observation system.

AKARI, SCUBA2 AND HERSCHEL DATA OF PRE-STELLAR CORES

  • Ward-Thompson, D.;Pattle, K.;Kirk, J.M.;Andre, P.;Di Francesco, J.
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.117-121
    • /
    • 2017
  • We show Akari data, Herschel data and data from the SCUBA2 camera on JCMT, of molecular clouds. We focus on pre-stellar cores within the clouds. We present Akari data of the L1147-1157 ring in Cepheus and show how the data indicate that the cores are being externally heated. We present SCUBA2 and Herschel data of the Ophiuchus region and show how the environment is also affecting core evolution in this region. We discuss the effects of the magnetic field in the Lupus I region, and how this lends support to a model for the formation and evolution of cores in filamentary molecular clouds.