• 제목/요약/키워드: stars: individual (L1551 IRS5)

검색결과 2건 처리시간 0.018초

THE MULTIPLE PROTO STELLAR SYSTEM L1551 IRS5 AT 5 AU RESOLUTION

  • LIM JEREMY;TAKAKUWA SHIGEHISA
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.237-240
    • /
    • 2005
  • We present images of L1551 IRS5 at angular resolutions as high as ${\~}$30 mas, corresponding to a spatial resolution of ${\~}$5 AU, made at 7 mm with the VLA. Previously known to be a binary protostellar system, we show that L1551 IRS5 is likely a triple protostellar system. The primary and secondary components have a projected separation of ${\~}$46 AU, whereas the tertiary component has a projected separation of ${\~}$11 AU from the primary component. The circumstellar dust disks of the primary and secondary components have dimensions of ${\~}$15 AU, whereas that of the tertiary component has a dimension of ${\~}$10 AU. Their major axes are closely, but not perfectly, aligned with each other, as well as the major axis of the surrounding flattened, rotating, and contracting molecular condensation (pseudodisk). Furthermore, the orbital motion of the primary and secondary components is in the same direction as the rotational motion of this pseudodisk. We suggest that all three protostellar components formed as a result of the fragmentation of the central region of the molecular pseudo disk. The primary and secondary components, but apparently not the tertiary component, each exhibits a bipolar ionized jet that is centered on and which emergers perpendicular to its associated dust disk. Neither jets are resolved along their base, implying that they are driven within a radial distance of ${\~}$2.5 AU from their central protostars. Finally, we show evidence for what may be dusty matter streams feeding the two main protostellar components.

HIGH ANGULAR RESOLUTION [Fe II] λ1.644 μ SPECTROSCOPY OF YSOS WITH SUBARU TELESCOPE

  • PYO TAE-SOO;HAYASHI MASAHIKO;NAOTO KOBAYASHI;TERADA HIROSHI;TOKUNAGA ALAN T.
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.249-252
    • /
    • 2005
  • We present results of the velocity-resolved spectroscopy of the [Fe II] $\lambda$1.644${\mu}m$ emission toward outflow sources with the Subaru Telescope at the angular resolution of 0.apos;16 ${\~}$ 0.apos;5 arcseconds. The observed sources are L1551 IRS 5, DG Tau, HL Tau and RW Aur, which are located in the Taurus-Aurigae Molecular Cloud, one of the closest star forming regions (0.apos;1 = 14 AU). We were able to resolve outflow structure in the vicinity of the sources at a scale of a few tens of AU. The position-velocity diagram of each object shows two velocity components: the high velocity component (HVC: 200 - 400 km $s^{-l}$) and the low velocity component (LVC: 50 - 150 km $s^{-l}$), which are clearly distinct in space and velocity. The HVC may be a highly collimated jet presumed from its narrow velocity width and high velocity. The LVC, on the other hand, may be a widely opened disk wind inferred from its broad velocity width and low velocity. The spectrum taken perpendicular to the L1551 IRS 5 outflow at its base shows that the LVC has a spatially wide subcomponent, supporting the above interpretation. We demonstrated that the [Fe II] 1.644 $\mu$ spectroscopy is a very powerful tool for the studies of fast jets and winds that directly emanate from star-disk systems.