• Title/Summary/Keyword: stars: individual: Y Cygni

Search Result 4, Processing Time 0.017 seconds

EVOLUTION OF ORBIT AND ROTATION OF A PSEUDO-SYNCHRONOUS BINARY SYSTEM ON THE MAIN SEQUENCE

  • Li, Lin-Sen
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.1
    • /
    • pp.1-4
    • /
    • 2018
  • We study the pseudo-synchronous orbital motion of a binary system on the main sequence. The equations of the pseudo-synchronous orbit are derived up to $O(e^4)$ where e is the eccentricy of the orbit. We integrate the equations to present their solutions. The theoretical results are applied to the evolution of the orbit and spin of the binary star Y Cygni, which has a current eccentricity of $e_0\;=\;0.142$. We tabulate our numerical results for the evolution of the orbit and spin per century. The numerical results for the semi-major axes and rotational angular velocities in the evolutional time scales of three stages (synchronization, circularization, and collapse time scale) are also tabulated. Synchronization is achieved in about $5{\times}10^3\;years$ followed by circularization lasting about $1{\times}10^5\;years$ before decaying in $2{\times}10^5\;years$.

PHOTOMETRIC PROPERTIES AND METALLICITY OF V1719 CYGNI

  • Kim, Chul-Hee;Yushchenko, A.V.
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.3
    • /
    • pp.73-79
    • /
    • 2011
  • We collect 24 times of light maxima data from sources in the literature, unpublished data and open databases, and investigate the variations of the observed and calculated (O-C) values for light maxima of V1719 Cyg. We found no evidence of the variations in the (O-C) values. We estimate the effective temperature and surface gravity using both the Kurucz and MARCS/SSG grids for different metallicity values [A/H]=0.0 and +0.5 for V1719 Cyg. It is confirmed that the temperature is almost the same, but, in the case of surface gravity, the MARCS/SSG grid gives the value closest to that obtained from the period-gravity relation derived by using the pulsation-evolution theory. We obtain two spectra of V1719 Cyg from spectroscopic observation which permitted us to find the effective temperature and the surface gravity of the star directly. We estimate the metallicity and it is found that the abundance of iron is equal to the solar value.

EXPANSION VELOCITY AND SPECTROSCOPIC CLASSIFICATION OF NOVA DELPHINI 2013

  • AZALIAH, RHISA;MALASAN, HAKIM L.;HAANS, GABRIELA K.;AKHYAR, SAEFUL
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.251-254
    • /
    • 2015
  • Low resolution spectra of Nova Delphini 2013 (V339 Del) in the optical range have been obtained at Bosscha Observatory, Indonesia during its maximum light (V = 4.3). Spectra were observed from August 16 to 27, 2013. The GAO-ITB RTS 20.3 cm telescope, and SBIG DSS-7 spectrograph and SBIG ST-7 XE as the detector have been employed throughout the observations. The spectra show P-Cygni profiles in Balmer, NaI'D' and Fe II lines, from which we determined shell expansion velocities of $1421.66{\pm}39.18km/s$, $1227.54{\pm}21.57km/s$ and 1402.86 km/s, respectively. Our spectroscopic observations followed the spectral evolution of V339 Del from the pre-maximum phase to early Orion phase. The characteristics of the nova Delphini 2013 resembles those of Fe II-type novae.

ACCRETION FLOW AND DISPARATE PROFILES OF RAMAN SCATTERED O VI λλ 1032, 1038 IN THE SYMBIOTIC STAR V1016 CYGNI

  • Heo, Jeong-Eun;Lee, Hee-Won
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.2
    • /
    • pp.105-112
    • /
    • 2015
  • The symbiotic star V1016 Cygni, a detached binary system consisting of a hot white dwarf and a mass-losing Mira variable, shows very broad emission features at around 6825 Å and 7082 Å, which are Raman scattered O vi λλ 1032, 1038 by atomic hydrogen. In the high resolution spectrum of V1016 Cyg obtained with the Bohyunsan Optical Echelle Spectrograph these broad features exhibit double peak profiles with the red peak stronger than the blue counterpart. However, their profiles differ in such a way that the blue peak of the 7082 feature is relatively weaker than the 6825 counterpart when the two Raman features are normalized to exhibit an equal red peak strength in the Doppler factor space. Assuming that an accretion flow around the white dwarf is responsible for the double peak profiles, we attribute this disparity in the profiles to the local variation of the flux ratio of O vi λλ 1032, 1038 in the accretion flow. A Monte Carlo technique is adopted to provide emissivity maps showing the local emissivity of O vi λ1032 and O vi λ1038 in the vicinity of the white dwarf. We also present a map indicating the differing flux ratios of O vi λλ 1032 and 1038. Our result shows that the flux ratio reaches its maximum of 2 in the emission region responsible for the central trough of the Raman feature and that the flux ratio in the inner red emission region is almost 1. The blue emission region and the outer red emission region exhibit an intermediate ratio around 1.5. We conclude that the disparity in the profiles of the two Raman O vi features strongly implies accretion flow around the white dwarf, which is azimuthally asymmetric.