• 제목/요약/키워드: stars: abundances

검색결과 87건 처리시간 0.023초

AKARI/IRC spectroscopic survey for interstellar ice study

  • Kim, Jaeyeong;Lee, Jeong-Eun;Kim, Il-Seok;Aikawa, Yuri;Jeong, Woong-Seob;Lee, Ho-Gyu;Noble, Jennifer A.;Dunham, Michael M.
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.41.3-41.3
    • /
    • 2019
  • Ices in interstellar environments are well traced mostly by their absorption features in the near- to mid-infrared spectrum. The infrared camera (IRC) aboard AKARI provides us the near-infrared spectroscopic data which cover $2.5-5.0{\mu}m$ with a spectral resolution of R ~ 120. Our AKARI spectroscopic survey of young stellar objects (YSOs), including low-luminosity protostars and background stars, revealed the absorption features of $H_2O$, $CO_2$, CO, and XCN ice components. We present near-infrared spectra of the observed targets and compare their ice abundances with those previously derived from various YSOs and the background stars behind dense molecular clouds and cores. In addition, we suggest possible science cases for SPHEREx, NASA's new near-infrared space observatory, based on the results from our AKARI IRC spectroscopic study.

  • PDF

New Photometric System for CN and CH

  • Lee, Jae-Woo
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.43.2-43.2
    • /
    • 2016
  • During the last decade, there has been a dramtic paradigm shift on the definition of the globular cluster (GC) systems. The decades-long lighter elemental variation issue in GC stars is now considered to be a generic feature of normal GCs in our Galaxy, most likely engraved during the multiple-phase normal GC formation. In this talk, we will introduce the new photometric system, so-call the JWL System, to measure CN and CH abundances in multiple stellar populations in GCs. The utility and the future application of the JWL System will be discussed.

  • PDF

JK INFRARED PHOTOMETRY OF THE GLOBULAR CLUSTER M3

  • LEE SANG-GAK;LEE MYUNG GYOON;KIM EUNHYEUK
    • 천문학회지
    • /
    • 제29권2호
    • /
    • pp.171-179
    • /
    • 1996
  • We have obtained the J K images of the central region of the globular cluster M3 (NGC5272), using the $256\pm256$ InSb array. We present JK photometry of bright red giant branch stars in the central $2'.2\pm2'.2$ region of M3. The infrared color-magnitude diagrams are presented. The comparison of the red giant branch of M3 with that of M13 confirms that both globular clusters have similar metal abundances.

  • PDF

Multiple Stellar Populations of Galactic Globular Clusters NGC 6656 and NGC 6723

  • 천상현;손영종;이영욱;한상일;노동구;이재우
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.143.1-143.1
    • /
    • 2011
  • Deep Ca,b,y images obtained from the CTIO 4m Blaco telescope are used to investigate the multiple stellar populations of red giant branch (RGB) and sub-giant branch (SGB) in Galactic globular clusters NGC 6656 and NGC 6723. For NGC 6656, confirming the result of Lee et al. (2009), we find two discrete populations of the RGB stars of which mean color separation is about 0.2 mag in hk[=(Ca-b)-(b-y)] index. Furthermore, we also find the bimodel distribution of the SGB stars in (hk, y) color-magnitude diagram. A new finding is that the (hk, y) color-magnitude diagram of NGC 6723 shows two distinct RGB stars with different calcium abundances of which mean color separation is about 0.12 mag in hk index. This multiple stellar feature has not been observed in previous observation, suggesting that NGC 6723 may also be a possible relic of dwarf galaxies that merged into the Milky Way in the past. Thus our result adds further constraints to the merging scenario of the Galaxy formation. Unfortunately, the split of SGB stars in NGC 6723 is not obvious. We will present some statistical results to compare properties of two populations in two clusters.

  • PDF

ESTIMATION OF NITROGEN-TO-IRON ABUNDANCE RATIOS FROM LOW-RESOLUTION SPECTRA

  • Kim, Changmin;Lee, Young Sun;Beers, Timothy C.;Masseron, Thomas
    • 천문학회지
    • /
    • 제55권2호
    • /
    • pp.23-36
    • /
    • 2022
  • We present a method to determine nitrogen abundance ratios with respect to iron ([N/Fe]) from molecular CN-band features observed in low-resolution (R ~ 2000) stellar spectra obtained by the Sloan Digital Sky Survey (SDSS) and the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Various tests are carried out to check the systematic and random errors of our technique, and the impact of signal-to-noise (S/N) ratios of stellar spectra on the determined [N/Fe]. We find that the uncertainty of our derived [N/Fe] is less than 0.3 dex for S/N ratios larger than 10 in the ranges Teff = [4000, 6000] K, log g = [0.0, 3.5], [Fe/H] = [-3.0, 0.0], [C/Fe] = [-1.0, +4.5], and [N/Fe] = [-1.0, +4.5], the parameter space that we are interested in to identify N-enhanced stars in the Galactic halo. A star-by-star comparison with a sample of stars with [N/Fe] estimates available from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) also suggests a similar level of uncertainty in our measured [N/Fe], after removing its systematic error. Based on these results, we conclude that our method is able to reproduce [N/Fe] from low-resolution spectroscopic data, with an uncertainty sufficiently small to discover N-rich stars that presumably originated from disrupted Galactic globular clusters.

The Spectra Investigation of the Halo Planetary Nebula BoBn 1

  • Hyung, Siek;Otsuka, Masaaki;Tajitsu, Akito;Izumiura, Hideyuki
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.72.2-72.2
    • /
    • 2010
  • The extremely metal-poor halo planetary nebula BoBn 1 has been investigated based on IUE archive data, Subaru/HDS spectra, VLT/UVES archive data, and Spitzer/IRS spectra. We have measured a heliocentric radial velocity of $+191.6\pm1.3\;kms^{-1}$ and expansion velocity 2Vexp of $40.5\pm3.3\;kms^{-1}$ from an average over 300 lines. The estimations of C, N, O, and Ne abundances from the optical recombination lines (ORLs) and Kr, Xe, and Ba from the collisional excitation lines (CELs) are also done. We have detected 5 fluorine and several slow neutron capture elements (the s-process). The amounts of [F/H], [Kr/H], and [Xe/H] suggest that BoBn 1 is the most F-rich among F detected PNe and is a heavy s-process element rich PN. The photo-ionization models built with non-LTE theoretical stellar atmospheres indicate that the progenitor was a 1-1.5 $M_\bigstar$ that would evolve into a white dwarf with an $0.62M_{\odot}$ core mass and $0.09M_{\odot}$ ionized nebula. Careful examination implies that BoBn 1 has evolved from a binary and experienced coalescence during the evolution to become a visible PN. The elemental abundances except N could be explained by a binary model composed of $0.75M_{\odot}+1.5M_{\odot}$ stars.

  • PDF

The Barium Star HD204075: Iron Abundance and the Absence of Evidence for Accretion

  • Jeong, Yeuncheol;Yushchenko, Alexander;Gopka, Vira;Yushchenko, Volodymyr;Rittipruk, Pakakaew;Jeong, Kyung Sook;Demessinova, Aizat
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권3호
    • /
    • pp.105-113
    • /
    • 2019
  • Spectroscopic observations of barium star ${\zeta}$ Capricornus (HD204075) obtained at the 8.2 m telescope of the European Southern Observatory, with a spectral resolving power R = 80,000 and signal to noise ratio greater than 300, were used to refine the atmospheric parameters. We found new values for effective temperature ($T_{eff}=5,300{\pm}50K$), surface gravity ($log\;g=1.82{\pm}0.15$), micro-turbulent velocity ($v_{micro}=2.52{\pm}0.10km/s$), and iron abundance ($log\;N(Fe)=7.32{\pm}0.06$). Previously published abundances of chemical elements in the atmosphere of HD204075 were analyzed and no correlations of these abundances with the second ionization potentials of these elements were found. This excludes the possible influence of accretion of hydrogen and helium atoms from the interstellar or circumstellar environment to the atmosphere of this star. The accretion of nuclear processed matter from the evolved binary companion was primary cause of the abundance anomalies. The young age of HD204075 allows an estimation of the time-scale for the creation of the abundance anomalies arising from accretion of interstellar hydrogen and helium as is the case of stars with low magnetic fields; which we estimate should exceed $10^8$ years.

Enhanced Nitrogen in Morphologically Disturbed Blue Compact Galaxies at 0.20 < z < 0.35: Probing Galaxy Merging Features

  • 정지원;이수창;성언창;염범석;;이원형;경재만
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.39-39
    • /
    • 2013
  • We present a study of correlations between the elemental abundances and galaxy morphologies of 91 blue compact galaxies (BCGs) at z=0.20-0.35 with Sloan Digital Sky Survey (SDSS) DR7 data. We classify the morphologies of the galaxies as either 'disturbed' or 'undisturbed', by visual inspection of the SDSS images, and using the Gini coefficient and M20. We derive oxygen and nitrogen abundances using the Te method. We find that a substantial fraction of BCGs with disturbed morphologies, indicative of merger remnants, show relatively high N/O and low O/H abundance ratios. The majority of the disturbed BCGs exhibit higher N/O values at a given O/H value compared to the morphologically undisturbed galaxies, implying more efficient nitrogen enrichment in disturbed BCGs. We detect Wolf-Rayet (WR) features in only a handful of the disturbed BCGs, which appears to contradict the idea that WR stars are responsible for high nitrogen abundance. Combining these results with Galaxy Evolution Explorer (GALEX) GR6 ultraviolet (UV) data, we find that the majority of the disturbed BCGs show systematically lower values of the $H{\alpha}$ to near-UV star formation rate ratio. The equivalent width of the $H{\beta}$ emission line is also systematically lower in the disturbed BCGs. Based on these results, we infer that disturbed BCGs have undergone star formation over relatively longer time scales, resulting in a more continuous enrichment of nitrogen. We suggest that this correlation between morphology and chemical abundances in BCGs is due to a difference in their recent star formation histories.

  • PDF

KINEMATICS AND CHEMISTRY OF THE S140/L1204 MOLECULAR COMPLEX

  • Park, Yong-Sun;Minh, Young-Chul
    • 천문학회지
    • /
    • 제28권2호
    • /
    • pp.255-264
    • /
    • 1995
  • The HII region S140 and the associated molecular cloud L1204 have been observed with 10 molecular transitions, CO (1-0), $^{13}CO$ (1-0), $C^{18}O$ (1-0), CS (2-1), $HCO^+$ (1-0), HCN (1-0), SO (${2_2}-{1_1}$), $SO_2(2_{20}-3_{13})$, OCS (8-7), and $HNCO\;(4_{04}-3_{03})$ with ${\sim}50"$ angular resolutions. More than 7,000 spectra were obtained in total. The morphology of this region shows a massive fragment (the S140 core) and the extended envelope to the northeast. Several gas condensations have been identified in the envelope, having masses of ${\sim}10^{3}M_{\odot}$ and gas number densities of ${\lesssim}10^{4}cm^{-3}$ to $3{\times}10^{5}cm^{-3}$ in their cores. The column densities of the observed molecular species toward the S140 core appear to be the typical warm clouds' abundances. It seems to be that the S140 core and L1204 have been swept up by an expanding shell called the Cepheus bubble. The large value of $L_{IR}$(embedded\;stars)/$M_{cloud}\;{\sim}\;5\;L_{\odot}$/$M_{\odot}$ of the S140 core may suggest that the star formation has been stimulated by the HII region, but the shock velocity and the pressure of the region seem to give a hint of the spontaneous star formation by the self gravity.

  • PDF

The Presence of Two Distinct Red Giant Branches in the Globular Cluster NGC 1851

  • Han, Sang-Il;Lee, Young-Wook;Joo, Seok-Joo;Sohn, Sangmo Tony;Yoon, Suk-Jin;Kim, Hak-Sub;Lee, Jae-Woo
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2009년도 한국우주과학회보 제18권2호
    • /
    • pp.30.2-30.2
    • /
    • 2009
  • There is a growing body of evidence for the presence of multiple stellar populations in some globular clusters, including NGC 1851. For most of these peculiar globular clusters, however, the evidence for the multiple red giant-branches (RGBs) having different heavy elemental abundances as observed in $\omega$ Centauri is hitherto lacking, although spreads in some lighter elements are reported. It is therefore not clear whether they also share the suggested dwarf galaxy origin of $\omega$ Cen or not. Here we show from the CTIO 4m UVI photometry of the globular cluster NGC 1851 that its RGB is clearly split into two in the U - I color. The two distinct RGB populations are also clearly separated in the abundance of heavy elements as traced by Calcium, suggesting that the type II supernovae enrichment is also responsible, in addition to the pollutions of lighter elements by intermediate mass asymptotic giant branch stars or fast-rotating massive stars. The RGB split, however, is not shown in the V - I color, as indicated by previous observations. Our stellar population models show that this and the presence of bimodal horizontal-branch distribution in NGC 1851 can be naturally reproduced if the metal-rich second generation stars are also enhanced in helium.

  • PDF