• 제목/요약/키워드: starch synthesis

검색결과 95건 처리시간 0.03초

Expression of Bacillus macerans Cyclodextrin Glucanotransferase on the Cell Surface of Saccharomyces cerevisiae.

  • 김규용;김명동;한남수;서진호
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.191-193
    • /
    • 2000
  • B. macerans 유래의 CGTase를 yeast surface display기술을 이용하여 S. cerevisiae의 표면에 발현된 것을 halo-test와 immunofluorescence microscopy와 flow cytometry를 통하여 확인하였다. 재조합 효모는 효소의 cyclization작용을 저해하고 CD의 분해작용을 촉진하는 glucose와 maltose를 제거하는 발효공정과 표면 발현된 CGTase의 cyclization 공정을 동시에 수행할 수 있어 CD의 생산, 분리공정을 효율적으로 개선하였다.

  • PDF

Alkaline $\alpha$-amylase Production from Bacillus megaterium

  • Jia, Shiru;Lim, Chae-kyu;Seo, Gwang-Yeob;Nam, Hyung-Gun
    • 환경위생공학
    • /
    • 제24권1호
    • /
    • pp.40-46
    • /
    • 2009
  • The enzyme expressed from strain L-49 was 2.01 times higher than that of original strain. Strain L-49 can grow on culture plate with $50{\mu}g/mL$ ampicillin. The synthesis of $\alpha$-amylase was greatly suppressed when strain L-49 was grown on monosaccharide such as glucose and polysaccharide at the same time cell concentration was low. Amylase production was enhanced when the bacterium was grown on starch and dextrin. Among different nitrogen sources tried, yeast extract was found to be the best followed by panpeptone, peptone, meat extract, bean meal, and corn steep liquor. The average rate of enzyme production was enhanced for 3~4 times in fermentation time from 24h to 44h. The sugar uptake rate has also increased. Low oxygen supply rate enhanced the rate of strain propagation but depressed the enzyme production. Hence it is benefit to obtain high enzyme activity that agitation speed maintained not lower than 400r/min and aeration rate maintained greater than 1:1vvm.

Prospect of plant molecular cytogenetics in the 21st century

  • Mukai, Yasuhiko
    • 한국생명과학회:학술대회논문집
    • /
    • 한국생명과학회 2003년도 제40회 국제학술심포지움
    • /
    • pp.14-27
    • /
    • 2003
  • The genomes of Arabidopsis and rice have been fully sequenced. Genomic sequencing provides global information about genome structure and organization. A comprehensive research account of our recent studies conducted on genome painting, comparative genomics and genome fusion is provided in order to project the prospects of plant cytogenetic research in post-genomics era. Genome analysis by GISH using genome painting is demonstrated as an excellent means suitable for visualization of a whole genome, since total genomic DNA representing the overall molecular composition of the genome is used as a probe. FISH on extended DNA fibers has been developed for high-resolution FISH and has contributed to determining the copy number and order of genes. We have also mapped a number of genes involving starch synthesis on wheat chromosomes by FISH and compared the position of these genes on linkage map of rice. Macro synteny between wheat and rice can be observed by comparing the location of these genes in spite of the fact that the size of DNA per chromosome differs by 20 fold in two. Moreover, to approach our goal towards making bread and udon noodles from rice flour in future by incorporating bread making and the noodle qualifies in rice, we have been successful in introducing large genomic DNA fragments containing agronomically important genes of wheat into a rice by successive introduction of large insert BAC clones, there by expanding genetic variability in rice. We call this method genome fusion.

  • PDF

도공액의 보수성에 관한연구(제4보)- 알칼리 반응형 보수.유동성 개량제의 합성 - (A study on the Water Retention of Coating Colors(IV)-Synthesis of Alkali Sensitive Water Retention and Rheology Modifiers-)

  • 이용규;엄기용
    • 펄프종이기술
    • /
    • 제29권3호
    • /
    • pp.17-25
    • /
    • 1997
  • Natural water-soluble polymers such as starch, casein and carboxy methyl cellulose(CMC) have been limited in their uses. However, the proper water retention of coating colors can not be obtained without addition of these polymers. Furthermore, the coating runnability and the physical properties of coated paper were not also satisfied. Therefore, the objective of this study was to synthesize the water retention and flow modifiers which can improve the water retention and flow properties of coating colors. We have measured physical properties of flow modifiers and coating colors which included flow modifiers. The viscosity of flow modifiers was very low at acid pH, and rapidly increased at about pH 7, and gradually reached to equilibrium at alkali pH. Such an increase comes from the molecular weight of flow modifiers and the amount of acrylic and methacrylic acids. The viscosity of coating color containing the flow modifiers was lower than that containing CMC. However, both of them had little difference in water retention. The water-phase viscosity of synthetic modifier containing coating color was either higher or similar compared to that of CMC containing coating color. The high shear viscosity of coating colors was low. Therefore, it can be concluded that the synthetic flow modifiers are very useful for improvement of flow properties and water retentions.

  • PDF

Antimicrobial Evaluation and Characterization of Copper Nanoparticles Synthesized by the Simple Chemical Method

  • Wazir, Arshad Hussain;Khan, Qudratullah;Ahmad, Nisar;Ullah, Faizan;Quereshi, Imdadullah;Ali, Hazrat
    • 한국재료학회지
    • /
    • 제32권2호
    • /
    • pp.80-84
    • /
    • 2022
  • Copper nanoparticles (CuNPs) are considered of great importance due to their high catalytic and antimicrobial activities. This study focuses on the preparation and characterization of CuNPs, and on their antibacterial/antifungal activities. A copper salt (copper sulfate pentahydrate) as precursor, starch as stabilizing agent, and ascorbic acid as reducing agent were used to fabricate CuNPs. The resulting product was characterized via different techniques such as X-ray diffractrometry (XRD), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning electron microscopy (SEM) to confirm its characteristic properties. Employing the Scherrer formula, the mean crystallite sizes of copper (Cu) and cuprous oxide (Cu2O) nanocrystals were found to be 29.21 and 25.33 nm, respectively, as measured from the main X-ray diffraction peaks. The functional groups present in the resulting CuNPs were confirmed by FTIR. In addition, the engineered CuNPs showed antibacterial and antifungal activity against tested pathogenic bacterial and fungal strains.

Genetic Diversity and Characterization of DPE1 Gene in Rice Germplasm

  • Aueangporn Somsri;Yong-Jin Park
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.220-220
    • /
    • 2022
  • Disproportionating Enzyme 1 (DPE1) is an a-1,4-D-glucanotransferase that cleavages the a-1,4-glucosidic bonds and transfers glucosyl groups. In rice endosperm, it participates in starch synthesis by transferring maltooligosyl groups from amylose and amylopectin to amylopectin. Here, we investigated the haplotype variations and evolutionary indices (e.g., genetic diversity and population structure) for the DPE1 gene in 374 rice accessions representing seven subgroups (wild, indica, temperate japonica, tropical japonica, aus, aromatic, and admixture). Variant calling analysis of DPE1 coding regions leads to the identification of six functional haplotypes representing/occupying 8 nonsynonymous SNPs. Nucleotide diversity analysis revealed the highest pi-value in wild group (0.0556) compared to other cultivated groups, of which temperate japonica showed the most reduction of genetic diversity value (0.003). A significant positive Tajima's D value (1.6330) of admixture highlights sudden population contraction under balancing selection, while temperate japonica with the lowest Tajima's D value (-1.3523) showed a selection signature of DPE1 domestication which might be the cause of excess of rare alleles. Moreover, these two subpopulations exhibits a greater differentiation (FST=0.0148), indicating a higher genetic diversity. Our findings on functional DPE1 haplotypes will be useful in future breeding programs, and the evolutionary indices can also be applicable in functional studies of the DPE1 gene.

  • PDF

Evolutionary Analyses of SSII-1 Gene Provides Insight into Its Domestication Signatures in Collected Rice Accessions

  • Thant Zin Maung;Yong-Jin Park
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.215-215
    • /
    • 2022
  • Starch synthase proteins (SSI, SSII and SSIII) in rice are mainly involved in amylopectin synthesis mediating its chain elongation, and the functional loss of SSII can increase amylose accumulation through decreasing of amylopectin chain proportions. For purposes of identifying functional haplotypes and evolutionary analyses of this gene, SSII-1, we investigated 374 rice accessions belonging to different subgroups of origins. We subsequently performed bioinformatic analyses on their variations through haplotyping, resequencing and structuring based on different classified populations. Haplotyping of cultivated rice accessions using genetic variations within SSII-1 genomic region of chromosome 10 revealed a total of 8 haplotypes, representing 6 functional haplotypes by 4 non-synonymous SNPs of three different exons (1, 4 and 10), which effect on protein structure. Higher nucleotide diversity value was found in wild group (0.0055) compared to any of cultivated subpopulations, of which aus showed the most reduction of diversity value (0.0003). Tajima's D analysis exhibits the most Tajima's D value only in admixture group (0.3600) which appears to be the cause of a sudden population contraction by rare alleles scarcity. A clear separation of some wild accessions from the admixed cultivated subpopulations was observed in PCA and phylogenetic analysis. Similar admixed pattern of population structure was estimated with an increased K values of 2 to 8 where genetic components of almost all cultivated subpopulations were shared with the wild which can also be subsequently estimated by very low FST-values by -0.011 (wild-aromatic) and -0.003 (wild-admixture).

  • PDF

밀 재배기간 온도상승이 빵용 밀의 생육 및 품질 특성에 미치는 영향 (Growth and Quality Characteristics of Korean Bread Wheat in Response to Elevated Temperature during their Growing Season)

  • 조철오;정한용;김유림;박진희;김경훈;김경민;강천식;고종민;손지영
    • 한국작물학회지
    • /
    • 제67권4호
    • /
    • pp.234-241
    • /
    • 2022
  • 본 연구에서는 온도상승에 따른 국내산 빵용 밀의 수량과 품질 변화 연구를 위해 TGT을 이용하여 생육기간 중 정상 온도 대비 1-3℃ 증가한 조건에서 수량구성요소와 수량 그리고 밀가루 품질 및 분자생리적 요인을 분석함으로써 밀 생육기 전반에 미치는 온도상승의 영향을 연구하였고, 연구 결과는 다음과 같다. 1. 밀 생육기간 중 평균온도가 1℃ 상승함에 따라 백강과 조경 두 품종 모두 출수기는 3일 정도 단축되었고, 일수립수가 감소하였으며, 온도가 상승함에 따라 수량이 감소하였다. 2. 밀가루 품질 분석 결과 아밀로스와 회분 함량은 백강과 조경 두 품종 모두 온도상승에 의한 영향을 받지 않았으나, T0 조건 대비 T3 조건에서 단백질 함량은 증가하였고 총 전분 함량은 감소하였으며, 3. 등숙기 중 글리아딘과 글루테닌 합성 및 대사 관련 유전자 발현 분석 결과 백강과 조경 두 품종 모두 종자 발달 후기에서 T0 대비 T3 조건에서 발현양이 높았으며, 전분 합성 관련 유전자 발현양은 빠르게 감소하였다. 4. TGT을 이용한 국내산 빵용 밀의 생육기 전반에 미치는 온도상승이 수량과 품질에 영향을 미쳤으며, 관련 유전자 발현 분석은 향후 기후변화 대응을 위한 기초 자료로 활용할 수 있을 것이다.

옥수수 및 Sorghum에 있어서 탄수화물과 NEL 축적에 관한 연구. III. Weender 성분 및 Net Energy Lactation (Studies on Reserved Carbohydrates and Net Energy Latation ( NEL ) in Corn and Sorghum III. Weender components and net enery lactation)

  • 김정갑
    • 한국초지조사료학회지
    • /
    • 제5권3호
    • /
    • pp.180-186
    • /
    • 1985
  • 본(本) 시험(試驗)은 옥수수와 sorghum식물(植物)에서 생육시기(生育時期) 및 환경온도(環境溫度)가 Weender성분(成分) 및 Net Energy Lactation 에 미치는 영향(影響)을 구명(究明)코자 옥수수의 Biizzard와 sorghum hybrids와 Pioneer931 및 Sioux를 공시품종(供試品種)으로 하여 뮌헨대학교초지연구소(大學校草地硏究所)에서 포장(圃場) 및 phytotron시험(試驗)으로 실시(實施)하였다. Phytotron의 주(晝)/야간(夜間) 실내온도(室內溫度)는 30/25, 25/20, 28/18 및 $18/8^{\circ}C$로 하였으며 일조(日照)는 35,000Lux로 13시간(時間) 조사(照謝)하였다. 1978-'81년간(年間) 얻어진 결과(結果)를 요약(要約)하면 다음과 같다. 1. 옥수수 및 sorghum의 crude protein은 3 엽기유식물(葉期幼植物)의 경우 각각(各各) 31.4% 및 33.9%에 이르나 생육(生育)이 진전(進展)됨에 따라 급속도(急速度)로 하락(下落)되어 출수기(出穗期)에는 9.0%(옥수수) 및 10.4% (sorghum)로 감소(減少)된다. 식물체내의 protein축적(蓄積)과 LWR 및 LAR간(間)에는 높은 정(正)(+)의 상관(相關)이 있다.($P{\leq}0.1%$). 2. 조섬유(粗纖維)의 합성(合成) 및 축적(蓄積)은 유수형성기(幼穗形成期)에서 지엽출현기(止葉出現期)에 본격적(本格的)으로 이루어지며 그 함량(含量)은 출수기(出穗期)에 각각(各各) 옥수수 28.4% 및 Sorghum 31.5%로 최고농도수집(最高濃度水準)에 달한다. 그러나 옥수수의 경우 조섬유(粗纖維) 함량(含量)은 종자(種子)가 성숙(成熟)됨에 따라 다시 감소(減少)되어 황숙기(黃熟期)에는 19.5%까지 감소(減少)되는데 반(反)해 sorghum 식물(植物)에서는 계속적(繼續的)으로 증가(增加)하는 경향(傾向)이 있다. 3. NEL 함량(含量)은 3 엽기(葉期)의 유식물(幼植物)에서 옥수수 5.98MJ 및 sorghum 5.64MJ/kg으로 높은 편이나 생육(生育)이 진행(進行)되는 동안 감소(減少)되어 유수(幼穗)가 형성(形成)되는 6-8 엽기(葉期)에 각각(各各) 5.82MJ(옥수수) 및 5.46MJ/kg(sorghum)으로 최저수준(最低水準)을 나타낸다. 옥수수의 NEL 함량(含量)은 그후 종자(種子)가 성숙(成熟)됨에 따라 6.70MJ(乳熟期) 및 6.94MJ/kg(完熟期)까지 증가(增加)되는데 비해 sorghum에서는 증가폭(增加幅)이 완만하여 계속(繼續) 낮은 수준(水準)을 유지(維持)한다. 4. 옥수수 및 sorghum식물(植物)의 NEL가치(價値)는 fruetosan, mono- 및 disaccharose등 non-structural carbo-hydrate의 합성(合成) 및 축적형태(蓄積形態)에 의(依)해 큰 영향(影響)을 받으면 NEL함량(含量)과 cell-wall constituents간(間)에는 부(負)(-)의 상관(相關)이 있다.($P{\leq}0.01%$). 5. NEL 및 starch value 환경온도(環境溫度)가 상승(上昇)됨에 따라 감소(減少)된다. 4 엽기(葉期) sorghum식물(植物)의 환경온도(環境溫度)를 달리 하였을 때 NEL가치(價値)는 각각(各各) 4.87MJ($30/25^{\circ}C$), 5.46MJ($25/20^{\circ}C$) 및 5.81MJ/kg($18/8^{\circ}C$)로 변(變)하여 고온(高溫)에서 net energy lactation 축적(蓄積)이 크게 감소(減少)되었다.

  • PDF

Physiological Responses to Mineral-Excessive Conditions: Mineral Uptake and Carbohydrate Partitioning in Tomato Plants

  • Sung, Jwakyung;Lee, Suyeon;Lee, Yejin;Kang, Seongsoo;Ha, Sangkeun;Sonn, Yeonkyu
    • 한국토양비료학회지
    • /
    • 제47권6호
    • /
    • pp.563-570
    • /
    • 2014
  • The shortage or surplus of minerals directly affects overall physiological metabolism of plants; especially, it strongly influences carbohydrate metabolism as a primary response. We have studied mineral uptake, synthesis and partitioning of soluble carbohydrates, and the relationship between them in N, P or K-excessive tomato plants, and examined the interaction between soluble carbohydrates and mineral elements. Four-weeks-old tomato plants were grown in a hydroponic growth container adjusted with excessive N ($20.0mmol\;L^{-1}$ $Ca(NO_3)2{\cdot}4H_2O$ and $20.0mmol\;L^{-1}$ $KNO_3$), P ($2.0mmol\;L^{-1}$ $KH_2PO_4$), and K ($20.0mmol\;L^{-1}$ $KNO_3$), respectively, for 30 days. Shoot growth rates were significantly influenced by excessive N or K, but not by excessive P. The concentrations of water soluble N (nitrate and ammonium), P and K were clearly different with each tissue of tomato plants as well as the mineral conditions. The NPK accumulation in all treatments was as follows; fully expanded leaves (48%) > stem (19%) = roots (16%) = petioles (15%) > emerging leaves (1). K-excessive condition extremely contributed to a remarkable increase in the ratio, which ranged from 2.79 to 10.34, and particularly potassium was dominantly accumulated in petioles, stem and roots. Fresh weight-based soluble sugar concentration was the greatest in NPK-sufficient condition ($154.8mg\;g^{-1}$) and followed by K-excessive (141.6), N-excessive (129.2) and P-excessive (127.7); whereas starch was the highest in K-excessive ($167.0mg\;g^{-1}$) and followed by P-excessive (146.1), NPK-sufficient (138.2) and N-excessive (109.7). Soluble sugar showed positive correlation with dry weight-based total N content (p<0.01) whereas was negatively correlated with soluble P (p<0.01) and dry weight-based total P (p<0.01). On the other hand, starch production was negatively influenced by total N (p<0.001), but, it showed positive relation with total K concentration (p<0.05). This study shows that uptake pattern of NPK and production and partitioning of soluble carbohydrate were substantially different from each mineral, and the relationship between water soluble- and dry weight-based-mineral was positive.