• Title/Summary/Keyword: starch structure

Search Result 254, Processing Time 0.02 seconds

Effect of Ohmic Heating on External and Internal Structure of Starches (옴가열이 전분의 외부와 내부 구조에 미치는 영향)

  • Cha, Yun-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.1
    • /
    • pp.126-133
    • /
    • 2015
  • Ohmic heating uses electric resistance heat which occurs equally and rapidly inside food when the electrical current is transmitted into. Prior to the study, we have researched the potato starch's thermal property changes during ohmic heating. Comparing with conventional heating, the gelatinization temperature and the range of potato starch treated by ohmic heating are increased and narrowed respectively. This result is appeared equally at wheat, corn and sweet potato starch. At this study, we treated potato, wheat, corn and sweet potato starch by ohmic/conventional method and observed change of external structure by microscope and internal structure by X-ray diffractometer. Conventional heated at $55^{\circ}C$ potato starch was not external structural changes. But ohmic heated potato starch is showed largely change. Some small size starch particle were broken or small particles are made of larger particle together or small particles caught up in the large particle. Changes in ohmic heated potato starch at $60^{\circ}C$ was greater. The inner matter came to an external particle burst inside and only the husk has been observed. The same change was observed in the rest of the starch. The change of internal structure of potato starch was measured using X-ray diffraction patterns. There was no significant difference between ohmic and conventional heating at $55^{\circ}C$. But almost every peak has disappeared ohmic at $60^{\circ}C$. Especially $5.4^{\circ}$ peak to represent the type B was completely gone. When viewed from the above results, external changes with change in the internal crystal structure of the starch particles were largely unknown to appear. In conclusion, during ohmic heating changes of starch due to the electric field with a change in temperature by the heating was found to have progressed at the same time.

Structure of Hot-Water Soluble Rice Starch in Relation to the Structure of Rice Starch and Texture of Cooked Rice (열수 가용성 쌀 전분의 구조와 전분의 구조 및 밥의 텍스쳐와의 관련성)

  • Kang, Kil-Jin;Kim, Kwan;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.757-761
    • /
    • 1995
  • The relationship between the molecular structure of rice starch and the texture of cooked rice was investigated using hot-water soluble rice starch. The structure of hot-water soluble starch bound amylose which was composed of small molecular weight and amylopectin which was composed of chain length of $\overline{DP}\;10{\sim}20$, and the average composition of amylose : amylopectin was 7 : 3. The molecular weight of amylose was the smaller and super long chain of amylopectin was the fewer, the extractable ratio of hot-water soluble rice starch was the higher. And hot-water solubility of rice starch be responsible for molecular structure of starch. On the texture of cooked rice, the extractable ratio of hot-water soluble rice starch was the higher, the hardness was the lower and the adhesiveness was the higher. The results suggest that the molecular structure of rice starch could be responsible for the texture of cooked rice.

  • PDF

Structure of the Starch-Binding Domain of Bacillus cereus $\beta-Amylase$

  • Yoon, Hye-Jin;Akira, Hirata;Motoyasu, Adachi;Atsushi, Sekine;Shigeru, Utsumi;Bunzo, Mikami
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.619-623
    • /
    • 1999
  • The C-terminal starch-binding domain of Bacillus cereus $\beta$-amylase expressed in Escherichia coli was purified and crystallized using the vapor diffusion method. The crystals obtained belong to a space group of $P3_2$ 21 with cell dimensions, a=b=60.20${\AA},\; c=64.92{\AA},\; and \; \gamma = 120^{\circ}$ The structure was determined by the molecular replacement method and refined at 1.95 ${\AA}$, with R-factors of 0.181. The final model of the starch-binding domain comprised 99 amino acid residues and 108 water molecules. The starch-binding domain had a secondary structure of two 4-stranded antiparallel p-sheets similar to domain E of cyclodextrin glucanotransferase and the C-terminal starch-binding domain of glucoamylase. A comparison of the structures of these starch-binding domains revealed that the separated starch-binding domain of Bacillus cereus $\beta-Amylase$had only one starch-binding site (site 1) in contrast to two sites (site 1 and site 2) reported in the domains of cyclodextrin glucanotransferase and glucoamylase.

  • PDF

Molecular Structure and Gelatinization Properties of Turnip Starch (Brassica rapa L.)

  • Kim, Nam-Hee;Yoo, Sang-Ho
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.470-473
    • /
    • 2005
  • Starch was isolated from turnip (Brassica rapa L.), and to elucidate the structure-function relationship its structural and physical properties were characterized. Morphological structure of the starch was analyzed by SEM (Scanning Electron Microscopy). Most of the starch granules were spherical in shape with diameter ranging from 0.5-10mm. Apart from larger granules ($<10\;{\mu}m$) which dominated the population size of turnip starch, significant amount of small ($0.5-2\;{\mu}m$) and mid-size granules (${\sim}\;{\mu}m$) were also detected. It was revealed that presumably, erosion damages occurred due to the attack of amylase-type enzymes on the surface of some granules. Branch chain-length distribution was analyzed by HPAEC (High-Performance Anion-Exchange Chromatography). The chain-length distribution of turnip starch revealed a peak at DP12 with obvious shoulder at DP18-21. The weight-average chain length ($CL_{avg}$) was 16.6, and a large proportion (11.8%) of very short chains (DP6-9) was also observed. The melting properties of starch were determined by DSC (Differential Scanning Calorimetry). The onset temperature ($T_o$) and the enthalpy change (${\Delta}H$) of starch gelatinization were $50.5^{\circ}C$ and 12.5 J/g, respectively. The ${\Delta}H$ of the retrograded turnip starch was 3.5 J/g, which indicates 28.2% of recrystallization. Larger proportion of short chains as well as smaller average chain-length can very well explain relatively lower degree of retrogradation in turnip starch.

Effect of Ohmic Heating on Rheological Property of Starches (옴가열이 전분의 레올로지 특성에 미치는 영향)

  • Cha, Yun-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.4
    • /
    • pp.304-311
    • /
    • 2019
  • Ohmic heating is a heating method based on the principle when an electrical current passes through food. Since this method is internal, electrical current damage occurred during heating treatment. The results of ohmic heated starch's external structure, X-ray diffraction, DSC analysis and RVA were differed from those of conventional heating at the same temperature. Several starches changed more rigid by structure re-aggregation. This change in starch was caused by change of physical, chemical, rheological property. The rheology of ohmic heated potato and corn starch of different heated methods were compared with chemically modified starch. After gelatinization, sample starch suspension (2%, 3%) measured flow curves by rheometer. Cross-linked chemically modified starch's shear stress was decreased with degree of substitution reversibly. Ohmic heated more dramatic, at $60^{\circ}C$. Potato starch's shear stress was less than commercial high cross-linked modified starch. Flow curves of potato starches measured at $4^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$. Showed that Ohmic heated potato starch's shear stress ranging between $4^{\circ}C$ and $20^{\circ}C$ was narrower than modified starch. According to this study, ohmic heated potato starch can be used by decreasing viscosity agent like cross-linked modified starch.

Enhancing mechanism of the saccharification of uncooked starch in an agitated bead reaction system (무증자전분의 분쇄마찰매체에 의한 효소당화촉진 Mechanism의 규명)

  • 조구형;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.5
    • /
    • pp.407-413
    • /
    • 1986
  • In an agitated bead reaction system, the enzymatic saccharification of uncooked starch was substantially enhanced. The enhancement mechanism was investigated front the view of the structural aspect of starch. The mechanical impact caused by the movement of the attrition-milling media resulted neither the destruction of microcrystalline structure nor the fragmentation of starch granule. instead, the most distinct phenomenon was the swelling of starch granule up to about 2.5 times, and the swelling mechanism was not similar with that caused by cooking. However, in the case of the enzyme addition in the attrition coupled reaction system, the swollen starch was easily fragmented into the large number of small particles by the synergistic action of the enzyme and milling-media. The exposed surface area of the fragmented particles plays the major role in enhancing the saccharification. The saccharification rate was quite different depending on the source of starch, the reason was discussed in terms of the granular structure of uncooked starches.

  • PDF

Structure and Properties of Starch on Rice Variety (계통이 다른 쌀 전분의 구조적 성질)

  • Kang, Kil-Jin;Kim, Kwan;Kim, Sung-Kon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.5
    • /
    • pp.684-689
    • /
    • 1995
  • The molecular structure of rice starch was investigated using Korean rice[3 varieties of Japonica type and 3 varieties of Tongi type(Japonica-Indica breeding type)]. The λmax of iodine complex and inherent viscosity of Japonica type were higher than those of Tongil type. $\beta$-Amylolysis limit of the starches was not different between the two rice types. In the distribution of molecular weight of rice starch, the molecular size of amylose and amylopectin for Japonica type were smaller than those for Tongil type. The chain of rice starch distributed F1 of above DP 55, F2 of DP 40~50 and F3 of DP 15~20, and the ratio of F3 against F2 for Japonica type was higher than that of Tongil type. The results suggest that rice of Japonica and Tongil type was different molecular structure of starch.

  • PDF

Bran structure and gelatinization properties of upland waxy rice starch (밭벼 찹쌀의 겨층 구조와 전분의 호화 성질)

  • Kim, Sung-Kon
    • Applied Biological Chemistry
    • /
    • v.34 no.1
    • /
    • pp.75-76
    • /
    • 1991
  • Bran structure and gelatinization property of upland and lowland japonica waxy brown rice were compared. Dimension, weight and number of aleurone layer were similar between upland(Nonglimna 1) and lowland(Shinsunchalbyeo) rices, but the aleurone layer and pericarp of upland rice were thicker. Water uptake rate of upland rice at $60^{\circ}C$ was lower than that of lowland one. There was no difference in intrinsic viscosity between two rice starches. Upland rice starch had lower onset temperature, narrower gelatinization temperature and lower water content lot gelatinization compared with lowland rice starch.

  • PDF

Comparison of structure and physicochemical properties of commercial domestic and imported wheat starch (시판 우리밀과 수입밀 전분의 구조 및 이화학적 특성 비교)

  • Jeong, Gyeong A;Park, Jinhee;Kim, Kyeong Hoon;Lee, Chang Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.521-526
    • /
    • 2021
  • This study characterized the chemical structure and physical properties of domestic commercial wheat starch and compared them with those of imported commercial wheat starch. Three varieties of domestic commercial wheat starch (DWS) were compared to three types of imported wheat starch (IWS). The morphology of DWS granules was spherical with diameters 17.0-18.3 ㎛; the IWS granules exhibited various diameter sizes (16.6-17.7 ㎛). The amylose content of both DWS and IWS was between 23.2-23.8%. DWS exhibited smaller gelatinization temperature ranges and gelatinization enthalpies compared to IWS. These results suggest that IWS-PW (plain wheat starch) is a mixture of many types of wheat starch. In conclusion, the quality of domestic wheat flour and imported wheat flour was related to gluten content as well as to the starch properties.

Effect of Ohmic Heating on Pasting Property of Starches (옴가열이 전분의 Pasting 특성에 미치는 영향)

  • Cha, Yun-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.4
    • /
    • pp.689-695
    • /
    • 2017
  • Ohmic heating is an internal heating method based on the principle that when an electrical current passes through food, electric resistance heat is uniformly generated internally by food resistance. Previous studies indicate that the thermal properties, external structure, internal structure, and swelling power of ohmic heat treated starch of various starches, such as potato, wheat, corn, and sweet potato, differed from those of conventional heating at the same temperature. In this study, the pasting property of starch, treated with ohmic and conventional heating, were measured by RVA (Rapid Visco-Analyzer). Our results show that as the ohmic heating temperature increased, the PV (Paste Viscosity) of the starch decreased significantly, and the PT (Pasting Temperature) increased. Changes in PV and PT indicate that the swelling of starch remains unchanged by ohm heating. The HPV (Hot Paste Viscosity), CPV (Cold Paste Viscosity) and SV (Setback Viscosity) of ohmic heated starch also differed from the conventional heated starch. The pasting property is similar to the viscosity curve of common cross-linked modified starch. In this experiment, we further confirm the similarity with modified starch and its usability.