• 제목/요약/키워드: starburst galaxy

검색결과 46건 처리시간 0.045초

Hearts of Darkness: Rethinking the Role of Supermassive Black Holes in Galaxy Evolution

  • Zabludoff, Ann
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.31.1-31.1
    • /
    • 2018
  • While astronomers are working hard to detect the earliest galaxies and to follow their evolution to redshift z~0, they remain baffled by the present-day dichotomy between disky, star forming (aka late-type) galaxies and quiescent, spheroidal (aka early-type) galaxies. The key is to find galaxies in transition from one class to the other, whose spectra indicate intense recent star formation that has now ended. We have identified thousands of such "post-starburst galaxies" and discovered that they are often the products of late-type galaxy-galaxy mergers. Their current kinematics, stellar populations, and morphologies are consistent with late- to early-type galaxy evolution. I will discuss recent work that suggests new connections between this violent history and the central supermassive black hole. In particular, the molecular gas reservoir of a post-starburst galaxy declines rapidly after the starburst ends and in a manner consistent with feedback from an active nucleus. Furthermore, a star is ~300x more likely to be tidally disrupted by the nucleus of a post-starburst galaxy than in other galaxies. Like the well-known black hole-bulge mass correlation, these surprising links between the properties of a galaxy on kpc scales and its supermassive black hole on pc scales require explanation.

  • PDF

Are There Any Old Globular Clusters in the Starburst Galaxy M82?

  • 임성순;황나래;이명균
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.63.1-63.1
    • /
    • 2011
  • M82 is a famous starburst galaxy which is dominated by young stellar populations and ISM. Some previous studies indicated the existence of intermediate-age and old stellar population in this galaxy, but little is known about them. We present a study of old globular clusters in M82 using the Hubble Space Telescope archive data. From the cluster survey of M82 we found 650 star clusters. We divided them into disk and halo star clusters according to their position. The color-color diagrams show that all 19 halo star clusters are old globular clusters. The disk sample may include both reddened young clusters and geniune old globular clusters. We estimated their ages using spectral energy distribution fit method with six filter data covering from ultraviolet (F330W) to infrared (F160W), and found that 30 of them are older than 3 Gyr. These are considered to be disk globular clusters. Twelve of the halo globular clusters are found to be partially resolved into their member stars. The (B-V) color range of the halo globular clusters is consistent with that of the Milky Way globular clusters, but most of M82 globular clusters are bluer than (B-V)=0.7. The existence of these old globular clusters suggests that the starburst galaxy M82 has an old stellar halo that may be as old as the Milky Way halo.

  • PDF

Optical and NIR Photometric Study of Star Clusters in IC10

  • 임성순;이명균
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.144.2-144.2
    • /
    • 2011
  • A dwarf irregular galaxy IC10 in the Local Group is the nearest starburst galaxy, playing an important role revealing the details of starburst. It is located close to the Galactic plane so that it suffers from severe foreground reddening. Therefore much less is known about the property of this galaxy compared with other galaxies in the Local Group. So are star clusters in this galaxy. We present a photometric study of the star clusters in IC10. 57 star clusters are already found from HST images in previous studies, and we newly found 15 star clusters using Local Group Survey data and SUBARU/Suprime-Cam data. We derive UBVRI integrated photometry of these star clusters from the images from Local Group Survey data and JHKs photometry taken with SUBARU/MOIRCS. Then we derive age and mass of these clusters using the spectral energy distribution fitting with the simple stellar population models. We discuss the photometric and physical properties of these star clusters and its implication.

  • PDF

Near-Infrared Photometric Study of Young Star Clusters in the Dwarf Starburst Galaxy NGC 1569

  • 경재만;성언창;김상철
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.56.1-56.1
    • /
    • 2010
  • We present JHK photometry of star clusters in the dwarf irregular/dwarf starburst galaxy NGC 1569. Adopting several criteria to exclude other sources like foreground stars, background galaxies, etc., ~150 star cluster candidates are identified in the near-infrared images of NGC 1569, which include very young star clusters. From analysis based on theoretical background, we find ten very young star clusters near the center of this galaxy. The total reddening values toward these clusters are estimated from comparison with the theoretical estimates given by star cluster mode.

  • PDF

ASIAA EXTRAGALACTIC STUDY WITH THE SMA

  • MATSUSHITA SATOKI;MAO RUI-QING;MULLER SEBASTIEN;CHOU CHUEN- YI;SAWADA-SATOH SATOKO;TRUNG DINH-VAN;LIM JEREMY;HSIEH PEI-YING;PECK ALISON B.
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.169-172
    • /
    • 2005
  • We present CO(3-2), CO(2-1), and 230 GHz (1.3 mm) continuum images of nearby galaxies taken with the Submillimeter Array (SMA). Our main topic is to study the relation between higher-J molecular gas (e.g., CO J=3-2, 2-1) and nuclear activities (e.g., active galactic nuclei [AGNs] and starbursts). The nearby Seyfert 2 galaxy M51 shows strong CO(3-2) emission from the circumnuclear molecular gas, with an intensity twice as strong as that of the CO(1-0) emission. Strong CO(3-2) emission enhancement suggests that the circum nuclear molecular gas in M51 is warm and dense, which may be related to the AGN activities. Molecular gas in the nearby moderate starburst galaxy NGC 6946 is distributed along the large-scale bar or spiral arms and along the minibar, and the multi-J CO line images show very similar distribution to each other. For this galaxy, there is no clear enhancement in higher-J lines as seen in M51, which may be because NGC 6946 does not have clear AGN activities. Based on the results of these two galaxies, the physical conditions of the circum nuclear molecular gas may be related to the AGN activities. We also observed the nearby edge-on starburst galaxy NGC 3628 and the starburst/Seyfert composite galaxy NGC 4945 with the CO(2-1) line and 230 GHz (1.3 mm) continuum emission. These information will give us some hints for understanding the relation between nuclear activities and circum nuclear molecular gas and dust.

The Environments of Post-Starburst Galaxies

  • Cho, Brian S.;Lee, Myung Gyoon;Lee, Gwang-Ho;Hwang, Ho Seong
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.78.2-78.2
    • /
    • 2017
  • Post-starburst (E+A) galaxies are thought to be in the green valley transition phase between star-forming blue galaxies and quiescent red galaxies. They are identified by their unusual spectra characterized by strong Balmer absorption lines and weak emission lines, indicating a period of starburst followed by abrupt quenching. However, the underlying mechanism that drives the formation of E+A galaxies still remains contradictory or inconclusive. Thus, in order to differentiate between the different formation scenarios of E+A galaxies, we perform a statistical analysis of the environments of E+A galaxies. We spectroscopically identify a large sample of post-starburst galaxies from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) using a selection criteria based on $H{\delta}$ equivalent width. We report our findings and discuss their implications in the context of post-starburst galaxy formation.

  • PDF

THE GALACTIC-SCALE MOLECULAR OUTFLOWS IN STARBURST GALAXIES NGC 2146 AND NGC 3628

  • TSAI, AN-LI;MATSUSHITA, SATOKI
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.499-502
    • /
    • 2015
  • Starburst galaxies have strong star formation activity and generate large scale outflows which eject a huge amount of gas mass. This process affects galaxy activity, and therefore, the detailed study of nearby starburst galaxies could provide valuable information for the study of distant ones. So far there have been only a few studies of galactic-scale molecular outflows due to the sensitivity limitation of telescopes. Our study provides two nearby examples, NGC 2146 and NGC 3628. We used Nobeyama Millimeter Array (NMA) CO(1-0) data, Chandra soft X-ray data, and NMA 3 mm data to study the kinematics of molecular outflows, their interaction with ionized outflows, and the star forming activity in the starburst region. We found that the gas ejected through molecular outflows is much more significant than that used to form stars.

다파장 관측 자료를 이용한 다양한 환경에서의 은하 진화 연구 (A Multi-Wavelength Study of Galaxy Transition in Different Environments)

  • 이광호
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.34.2-35
    • /
    • 2018
  • Galaxy transition from star-forming to quiescent, accompanied with morphology transformation, is one of the key unresolved issues in extragalactic astronomy. Although several environmental mechanisms have been proposed, a deeper understanding of the impact of environment on galaxy transition still requires much exploration. My Ph.D. thesis focuses on which environmental mechanisms are primarily responsible for galaxy transition in different environments and looks at what happens during the transition phase using multi-wavelength photometric/spectroscopic data, from UV to mid-infrared (MIR), derived from several large surveys (GALEX, SDSS, and WISE) and our GMOS-North IFU observations. Our multi-wavelength approach provides new insights into the *late* stages of galaxy transition with a definition of the MIR green valley different from the optical green valley. I will present highlights from three areas in my thesis. First, through an in-depth study of environmental dependence of various properties of galaxies in a nearby supercluster A2199 (Lee et al. 2015), we found that the star formation of galaxies is quenched before the galaxies enter the MIR green valley, which is driven mainly by strangulation. Then, the morphological transformation from late- to early-type galaxies occurs in the MIR green valley. The main environmental mechanisms for the morphological transformation are galaxy-galaxy mergers and interactions that are likely to happen in high-density regions such as galaxy groups/clusters. After the transformation, early-type MIR green valley galaxies keep the memory of their last star formation for several Gyr until they move on to the next stage for completely quiescent galaxies. Second, compact groups (CGs) of galaxies are the most favorable environments for galaxy interactions. We studied MIR properties of galaxies in CGs and their environmental dependence (Lee et al. 2017), using a sample of 670 CGs identified using a friends-of-friends algorithms. We found that MIR [3.4]-[12] colors of CG galaxies are, on average, bluer than those of cluster galaxies. As CGs are located in denser regions, they tend to have larger early-type galaxy fractions and bluer MIR color galaxies. These trends can also be seen for neighboring galaxies around CGs. However, CG members always have larger early-type fractions and bluer MIR colors than their neighboring galaxies. These results suggest that galaxy evolution is faster in CGs than in other environments and that CGs are likely to be the best place for pre-processing. Third, post-starburst galaxies (PSBs) are an ideal laboratory to investigate the details of the transition phase. Their spectra reveal a phase of vigorous star formation activity, which is abruptly ended within the last 1 Gyr. Numerical simulations predict that the starburst, and thus the current A-type stellar population, should be localized within the galaxy's center (< kpc). Yet our GMOS IFU observations show otherwise; all five PSBs in our sample have Hdelta absorption line profiles that extend well beyond the central kpc. Most interestingly, we found a negative correlation between the Hdelta gradient slopes and the fractions of the stellar mass produced during the starburst, suggesting that stronger starbursts are more centrally-concentrated. I will discuss the results in relation with the origin of PSBs.

  • PDF