• Title/Summary/Keyword: star photometry

Search Result 105, Processing Time 0.018 seconds

A Deep Optical Photometric Study of the Massive Young Open Clusters in the Sagittarius-Carina Spiral Arm

  • Hur, Hyeonoh
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.44.1-44.1
    • /
    • 2016
  • The Sagittarius-Carina spiral arm in the Galaxy contains several massive young open clusters. We present a deep optical photometric study on the massive young open clusters in the Sagittarius-Carina arm, Westerlund 2 and the young open clusters in the ${\eta}$ Carina nebula. Westerlund 2 is a less studied starburst-type cluster in the Galaxy. An abnormal reddening law for the intracluster medium of the young starburst-type cluster Westerlund 2 is determined to be $R_{V,cl}=4.14{\pm}0.08$. The distance modulus is determined from zero-age main-sequence fitting to the reddening-corrected color-magnitude diagrams of the early-type members to be $V_0-M_V=13.9{\pm}0.14mag$. The pre-main sequence (PMS) members of Westerlund 2 are selected by identifying the optical counterparts of X-ray emission sources from the Chandra X-ray observation and mid-infrared emission sources from the Spitzer/IRAC (the Infrared Array Camera) observation. The initial mass function (IMF) shows a slightly flat slope of ${\Gamma}=-1.1{\pm}0.1$ down to $5M_{\odot}$. The age of Westerlund 2 is estimated to be. 1.5 Myr from the main-sequence turn-on luminosity and the age distribution of PMS stars. The ${\eta}$ Carina nebula is the best laboratory for the investigation of the Galactic massive stars and low-mass star formation under the influence of numerous massive stars. We have performed deep wide-field CCD photometry of stars in the ${\eta}$ Carina nebula to determine the reddening law, distance, and the IMF of the clusters in the nebula. We present VRI and $H{\alpha}$ photometry of 130,571 stars from the images obtained with the 4m telescope at Cerro Tololo Inter-American Observatory (CTIO). RV,cl in the η Carina nebula gradually decreases from the southern part (~4.5, around Trumpler 14 and Trumpler 16) to the northern part around Trumpler 15 (~3.5). Distance to the young open clusters in the ${\eta}$ Carina nebula is partly revised based on the zero-age main-sequence fitting to the reddening-corrected color-magnitude diagrams (CMDs) and the (semi-) reddening-independent CMDs. We select the PMS members and candidates by identifying the optical counterparts of X-ray sources from the Chandra Carina Complex Survey and mid-infrared excess emission stars from the Spitzer Vela-Carina survey. From the evolutionary stage of massive stars and PMS stars, we obtain that the northern young open cluster Trumpler 15 is distinctively older than the southern young open clusters, Trumpler 14 (${\leq}2.5 Myr$) and Trumpler 16 (2.5-3.5 Myr). The slopes of the IMF of Trumpler 14, Trumpler 15, and Trumpler 16 are determined to be $-1.2{\pm}0.1$, $-1.5{\pm}0.3$, and $-1.1{\pm}0.1$, respectively. Based on the RV,cl of several young open clusters determined in this work and the previous studies of our group, We suggest that higher RV,cl values are commonly found for very young open clusters with the age of < 4 Myr. We also confirm the correlation between the slope of the IMF and the surface mass density of massive stars.

  • PDF

An exosolar planetary system N-body simuInfrared Spectro-Photometric Survey in Space: NISS and SPHEREx Missions

  • Jeong, Woong-Seob;Kim, Minjin;Im, Myungshin;Lee, Jeong-Eun;Pyo, Jeonghyun;Song, Yong-Seon;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Jo, Youngsoo;Lee, Duk-Hang;Ko, Kyeongyeon;Kim, Il-Joong;Park, Youngsik;Yang, Yujin;Ko, Jongwan;Lee, Hyung Mok;Shim, Hyunjin;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.47.1-47.1
    • /
    • 2018
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 have successfully developed by KASI. The capability of both imaging and spectroscopy is a unique function of the NISS. At first, it have realized the low-resolution spectroscopy (R~20) with a wide field of view of $2{\times}2deg$. in a wide near-infrared range from 0.95 to $2.5{\mu}m$. The major scientific mission is to study the cosmic star formation history in local and distant universe. It will also demonstrate the space technologies related to the infrared spectro-photometry in space. Now, the NISS is ready to launch in late 2018. After the launch, the NISS will be operated during 2 years. As an extension of the NISS, the SPEHREx (Spectro-Photometer for the History of the Universe Epoch of Reionization, and Ices Explorer) is the NASA MIDEX (Medium-class Explorer) mission proposed together with KASI (PI Institute: Caltech). It will perform the first all-sky infrared spectro-photometric survey to probe the origin of our Universe, to explore the origin and evolution of galaxies, and to explore whether planets around other stars could harbor life. Compared to the NISS, the SPHEREx is designed to have much more wide FoV of $3.5{\times}11.3deg$. as well as wide spectral range from 0.75 to $5.0{\mu}m$. After passing the first selection process, the SPHEREx is under the Phase-A study. The final selection will be made in the end of 2018. Here, we report the status of the NISS and SPHEREx missions.

  • PDF

SEARCH FOR DEBRIS DISKS BY AKARI AND IRSF

  • Takeuchi, Nami;Ishihara, Daisuke;Kaneda, Hidehiro;Oyabu, Shinki;Kobayashi, Hiroshi;Nagayama, Takahiro;Onaka, Takashi;Fujiwara, Hideaki
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.73-75
    • /
    • 2017
  • Debris disks are important observational clues to understanding on-going planetary system formation. They are usually identified by significant mid-infrared excess on top of the photospheric emission of a central star on the basis of prediction from J-, H-, and Ks-band fluxes and the stellar model spectra. For bright stars, 2MASS near-infrared fluxes suffer large uncertainties due to the near-infrared camera saturation. Therefore we have performed follow-up observations with the IRSF 1.4 m near-infrared telescope located in South Africa to obtain accurate J-, H-, and Ks-band fluxes of the central stars. Among 754 main-sequence stars which are detected in the AKARI $18{\mu}m$ band, we have performed photometry for 325 stars with IRSF. As a result, we have successfully improved the flux accuracy of the central stars from 9.2 % to 0.5 % on average. Using this dataset, we have detected $18{\mu}m$ excess emission from 57 stars in our samples with a $3{\sigma}$ level. We find that some of them have high ratios of the excess to the photospheric emission even around very old stars, which cannot be explained by the current planet-formation theories.

FOLLOW-UP PHOTOMETRY OF TWO NEW ECLIPSING PCEBs FROM THE SLOAN DIGITAL SKY SURVEY

  • WANGNOK, KITTIPONG;SANGUANSAK, NUANWAN;IRAWATI, PUJI;DHILLON, VIK;MARSH, TOM R.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.217-218
    • /
    • 2015
  • In this work, we present the result of our follow-up observations of SDSS J092741.73+332959.1 and SDSS J130733.49+215636.7 using the 2.35 m Thai National Telescope and ULTRASPEC instrument. Both systems are listed among the recently found white dwarf main sequence binaries from the Sloan Digital Sky Survey. SDSS J092741.73+332959.1 is a new PCEB with a period of 2.3 days, the longest orbital period known to date for white dwarf binaries. SDSS J130733.49+215636.7 is confirmed to be an eclipsing system with a period of 0.21 days from the Catalina Survey's light curve, however the parameters for the white dwarf are still uncertain. Our goal is to determine precise parameters for both systems using the Binary Maker 3 software. The observation for SDSS J0927+3329 was done on 9 January 2014 in the SDSS r' filter while the data for SDSS J1307+2156 were taken in the z' filter on 27 April 2014. Our models show that the red dwarf companions in both systems are well constrained inside their Roche Lobes. We find that the binary M2/M1 ratio in SDSS J0927+3329 is close to 0.5, with white dwarf and M-dwarf temperatures of 12000 K and 3300 K, respectively. Our preliminary result for SDSS J1307+2156 show that this system has an extreme mass ratio of 0.3. The white dwarf in this system has a temperature of 7500 K and the companion star has an effective temperature of 3150 K.

An Analysis of Near-infrared Light Curves of δ Scuti Variable BO Lyn (δ Scuti형 변광성 BO Lyn의 근적외선 광도곡선 분석)

  • Lim, Ji-Hye;Sohn, Jungjoo
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.389-397
    • /
    • 2016
  • In order to investigate the light curve difference in visual and infrared wavelength of ${\delta}$ Scuti variable Bo Lyn, observations were performed using BOAO 1.8m reflecting telescope and an infrared detector, KASINICS, with J, H, and Ks filters. Infrared light curves of total 7 nights were obtained between March and April in 2011, and those were compared to the V-filter light curve to examine the differences in period, time of maximum light, amplitude, and shape. From the periodic analysis of infrared light curve, a single frequency of $f_1=10.712cycle/day$, $P=0.09335{\pm}0.00002days$ was obtained, and there was no difference in the period along different wavelengths. In the infrared light curve, a frequency of $2f_1$ was detected. This frequency well explains the asymmetric shape of light curve, one of the characteristics of high-amplitude ${\delta}$ Scuti variables. We compared the locations of the measured infrared maxima and the predicted maxima of V-filter, finding that the times of maxima were delayed about 0.3 phase at infrared wavelengths. Amplitude ratios were adopted to be ${\Delta}J/{\Delta}V=0.328$, ${\Delta}H/{\Delta}V=0.216$, and ${\Delta}Ks/{\Delta}V=0.211$, with the range of variation being smaller at longer wavelengths. It seems that the differences in the times of maxima and amplitude occurred because the changes in brightness of a pulsating variable star are mainly caused by the change in temperature.